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Human visual recognition is outstandingly robust.
People can recognize thousands of object classes in the
blink of an eye (50–200 ms) even when the objects vary
in position, scale, viewpoint, and illumination. What
aspects of human category learning facilitate the
extraction of invariant visual features for object
recognition? Here, we explore the possibility that a
contributing factor to learning such robust visual
representations may be a taxonomic hierarchy
communicated in part by common labels to which
people are exposed as part of natural language. We did
this by manipulating the taxonomic level of labels (e.g.,
superordinate-level [mammal, fruit, vehicle] and
basic-level [dog, banana, van]), and the order in which
these training labels were used during learning by a
Convolutional Neural Network. We found that training
the model with hierarchical labels yields visual
representations that are more robust to image
transformations (e.g., position/scale, illumination, noise,
and blur), especially when images were first trained with
superordinate labels and then fine-tuned with basic
labels. We also found that Superordinate-label followed
by Basic-label training best predicts functional magnetic
resonance imaging responses in visual cortex and
behavioral similarity judgments recorded while viewing
naturalistic images. The benefits of training with
superordinate labels in the earlier stages of category
learning is discussed in the context of representational
efficiency and generalization.

Introduction

Despite the remarkable achievements of recent
computer vision models in image classification, the
robustness of a model’s performance given various
transformations of object appearances lags far
behind that of humans. The human visual system is
unparalleled in its ability to extract invariant visual
features of objects that enable good generalization
across changes in object position and size (Ito,
Tamura, Fujita, & Tanaka, 1995; Rust & DiCarlo,
2010), viewing direction (Biederman & Gerhardstein,
1993; Vuilleumier, Henson, Driver, & Dolan, 2002),
illuminations (Vogels & Biederman, 2002), and contrast
(Avidan, Harel, Hendler, Ben-Bashat, Zohary, &
Malach, 2002; Rolls & Baylis, 1986), and humans are
likely the only species who achieve such robustness for so
many categories and at various levels of abstraction. In
contrast, even state-of-the-art computer vision models
such as those implemented by convolutional neural
networks (CNNs) are challenged by this variability in
visual objects, with recognition performance dropping
dramatically by 40% to 50% when objects are presented
in varied perspectives and backgrounds (Barbu, Mayo,
Alverio, Luo, Wang, Gutfreund, Tenenbaum, & Katz,
2019). CNNs are also known to be highly vulnerable
to other image perturbations, such as adding noise or
blur (Hendrycks & Dietterich, 2019), even for changes
that are almost imperceptible to humans (Szegedy,
Zaremba, Sutskever, Bruna, Erhan, Goodfellow, &
Fergus, 2013) or that affect human perception only
marginally (Dodge & Karam, 2017; Geirhos, Temme,
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Rauber, Schütt, Bethge, & Wichmann, 2018). Because
tolerance to variability is what enables accurate and
flexible visual object recognition, understanding how
humans can successfully build such robust visual
representations has been a core question in various
disciplines ranging from cognitive science (Biederman,
1987; Tarr & Pinker, 1990) and neuroscience
(Plaut & Farah, 1990; Rolls, 1994, p. 199) to computer
vision (Marr, 1982; Ullman, 1989).

To understand what makes such robust object
recognition possible, researchers have investigated
architectural and functional characteristics of human
and primate ventral visual stream where object
recognition take place (DiCarlo, Zoccolan, & Rust,
2012) and identified biologically plausible algorithms
that are helpful for robust recognition, such as pooling
operations (Fukushima, 1980; Riesenhuber & Poggio,
2000) and recurrent connections (Kar, Kubilius,
Schmidt, Issa, & DiCarlo, 2019; Kubilius, Schrimpf,
Nayebi, Bear, Yamins, & DiCarlo, 2018). In contrast,
the computer vision community has taken a very
different approach to improving model robustness,
where one prominent approach is to expose CNNs
to adversarial examples (e.g., images intentionally
modified/perturbed to fool a recognition system) during
training (see Akhtar & Mian, 2018, for a review).
Here we focus on yet another important aspect of
visual recognition that may influence the system’s
robustness but has been rarely considered: the structure
of the category labels used during training. Image
classification models that are most frequently used in
Computer Vision (e.g., ResNet; He, Zhang, Ren, & Sun,
2016) are trained on 1000 categories from ImageNet
(Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009). These
categories are mostly composed of subordinate-level
labels, including, for example, 120 different dog breeds.
This may be the appropriate input for creating an
expert dog-breed classifier, but it results in a semantic
structure that is highly atypical compared to that of an
average person.

In contrast, category labels used by people have
a roughly hierarchical organization structure, all
chihuahuas are dogs, all dogs are mammals, and
all mammals are animals. Rosch and her colleagues
in 1976 found that adults are generally faster and
more accurate to identify objects at the basic level of
categorization (e.g., “dog”) than at the superordinate
level (e.g., “mammal”) or at the subordinate level (e.g.,
“chihuahua”). Developmental studies have similarly
observed that children find basic-level categories
easier to learn and process, acquiring basic labels
earlier than others (Mervis & Crisafi, 1982; Murphy
& Lassaline, 1997; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976), although some studies suggest
that more general concepts like superordinate-level
categories are often acquired first by infants and
young children (Mandler, Bauer, & McDonough,

1991; Quinn & Johnson, 2000; see Murphy (2016)
for how these conflicting results might be resolved).
Although the basic-level advantage is one of the best
known and most replicated phenomena in the field
of human categorization (Murphy & Lassaline, 1997;
Tanaka & Taylor, 1991; Tversky & Hemenway, 1984),
the question we ask here is different: What effects do
different kinds of labels have on learning robust visual
representations?

Previous behavioral studies found that having
semantic associations between categories facilitated
extraction of invariant visual features for object
recognition (Collins & Curby, 2013; Curby, Hayward,
W. G., & Gauthier, 2004; Gauthier, James, Curby,
& Tarr, 2003). In these studies, participants learned
semantic associations between novel objects through
training with adjective labels (e.g., sticky, loud,
nocturnal). They then performed a perceptual-matching
task where they compared two sequentially presented
objects and judged whether they were from the same
or different category. In the perceptual-matching task,
the first object of the pair was always presented at a
canonical orientation (0°), whereas the second object
could be presented at one of four depth-orientations
(0°, 30°, 60°, or 120°). Curby et al. (2004) found that
learning semantic relationships between categories
reduced viewpoint dependency in human object
recognition: both the accuracy and response time
needed to discriminate two objects being less impacted
by changes in an object’s orientation. Collins & Curby
(2013) later extended this research by demonstrating
that labels which were devoid of semantic association
(e.g., numbers) did not create the same tolerance
in visual recognition to depth-rotated objects;
learning semantically meaningful associations between
categories was key. Here, we build on this work by
asking whether a model exposed to hierarchical
labels during training learns more robust visual
representations compared to models supervised with
labels from only a single hierarchical level, and models
not supervised by labels at all (methods and results
for unsupervised models are in the Supplementary
Materials SM7).

Leveraging semantic information from learned
categories has been previously shown to improve
the classification performance of CNNs (Annadani
& Biswas, 2018; Frome, Corrado, Shlens, Bengio,
Dean, Ranzato, & Mikolov, 2013; Lei Ba, Swersky,
& Fidler, 2015, p. 20; Peterson, Soulos, Nematzadeh,
& Griffiths, 2018). For example, Frome et al. (2013)
re-trained a CNN to predict word vectors learned by
a word embedding model (Mikolov, Chen, Corrado,
& Dean, 2013) and found that learning the semantic
similarity between categories significantly boosted
the model’s zero-shot learning performance (i.e.,
ability to predict novel categories that are never seen
during training). More related to our work, Peterson
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et al. (2018) explored how labels at different levels in
a category hierarchy, and the order that they were
used in training, affected the visual representations
learned by CNN models. In this work, CNNs were
trained using either just one level of taxonomy labels
(e.g., basic or subordinate) or using multi-level labels
(e.g., training first with basic labels and then fine
tuning with subordinate labels, or vice versa). They
found that training on basic-level labels, either alone
or following subordinate-level training, induced a
more semantically structured representation, which
better predicted human similarity judgments and
category generalization patterns (e.g., generalizing
to a new basic-level category after observing only
a few subordinate exemplars). These results suggest
that learning categories with a hierarchical structure
of labels is beneficial for forming more human-like
visual representations in CNNs; however a direct
link between hierarchical label training and increased
robustness in visual recognition has never been
tested.

Here we investigated how the hierarchical structure
of labels provided during category learning changes
visual representations of objects that are learned by the
networks. We aim to understand which regiment of
label training achieves the most robust and human-like
visual representations. To investigate this problem,
we took a synergistic computational and behavioral
approach. We simulated object-category learning
using CNNs and thousands of naturalistic images
(Deng et al., 2009), and manipulated the training of
these models using labels from two different levels
of a category hierarchy: superordinate and basic.
We chose these two levels because they constitute
the most basic and inherent structure of human
semantic knowledge, even creating a debate over
their advantages in category learning and acquisition
(see Murphy, 2016, for a review). To compare the
visual representations learned from these differently
trained models, we conducted three computational
experiments (Experiments 1–3) each focused on
a specific type of representational robustness: (1)
tolerance to various visual transformations in object
recognition, (2) categorical separability (making
representations of different categories more dissimilar
or separable), and (3) shape bias (preserving shape
information more than other visual features, e.g.,
texture, in object representation). We also compared
models to see which produced the more human-like
categorical representations. We did this by comparing
their predictive performance to functional magnetic
resonance imaging (fMRI) signals recorded by Chang,
Pyles, Marcus, Gupta, Tarr, and Aminoff (2019)
during the viewing of naturalistic images (Experiment
4) and by comparing behavioral responses that
we collected using a triplet similarity judgement
task (Experiment 5). Given the previous work,

described above, relating semantic knowledge to visual
representation, we hypothesize that the exposure
to hierarchical relationships between labels during
training will produce more robust and human-like
visual representations compared to models trained
with a single-level of category labels, although it is
not clear from the literature which order of training
(superordinate-then-basic or basic-then-superordinate)
will result in the most robust visual representations.

Modeling method

In this study, we trained CNNs using identical
architectures and training sets while manipulating the
labels used to supervise the training. Specifically, we
trained models with the following: basic-level labels
only, superordinate-level labels only, first with basic
labels and then fine-tuned with superordinate labels, or
first with superordinate labels and then fine-tuned with
basic labels. For analysis of the visual representations,
we extract the bottleneck features from the encoder of
each model (i.e., the 1568-dimensional output of the
last convolutional layer; see Figure 1). Below we provide
a detailed description of the model training and the
methods used for statistical comparison.

Model architecture

Our CNN models consist of five blocks of two
convolutional layers, each followed by max pooling
and batch normalization layers (Figure 1). For all
convolutional and max pooling operations, zero
padding was used to produce output feature maps
having the same size as the input. Rectified linear units
(ReLU) were used to obtain an activation function
after each convolution. The flattened output of the
final Convolutional layer—the "bottleneck" features
(dim = 1568)—were then extracted as a model’s visual
representation and fed into one fully connected dense
layer. Softmax was used to obtain output activation
functions for the supervised models.

Model training

We manipulated the types of labels used during the
supervised training of these CNNs. The basic only
model was trained with basic-level labels only, and
the superordinate only model was trained only on
superordinate-level labels. The basic-then-superordinate
and the superordinate-then-basic models were
trained with both types of labels, but in different
order. For training and validation, we used 30 basic
categories from the ImageNet 2012 dataset (Deng et
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Figure 1. The Pipeline for the CNNs used in our study. The bottleneck features (the flattened output of the final Convolutional layer)
are extracted and used as a model’s visual representation (dim = 1568). The final predicted output, “Label Vector,” is a one-hot
embedding of labels according to the model’s labeling scheme (e.g., basic-only, superordinate-only, basic-then-superordinate,
superordinate-then-basic).

Classification accuracy on the testing dataset

Using original softmax
layer Using linear classifier

Using prototypical
representation

Model
Number of

categories learned Superordinate Basic Superordinate Basic Superordinate Basic

Basic only 30 N/A 0.9 0.90 0.87 0.85 0.80
Superordinate only 10 0.95 N/A 0.93 0.80 0.89 0.66
Basic-then-superordinate 40 0.95 N/A 0.94 0.85 0.91 0.78
Superordinate-then-basic 40 N/A 0.88 0.93 0.86 0.90 0.81

Table 1. Classification accuracy on the testing dataset. To evaluate the learned representation on both category levels, we report two
accuracy measures in addition to the classification scores from the originally trained final Softmax layer: (1) using a linear classifier
trained on top of the frozen base encoder (which outputs the “bottleneck” features), and (2) using the representation of the category
prototype (used for analyzing robustness to image transformation, see Experiment 1 Method for details). Average precision and
average recall scores are reported in Supplementary Material, SM2.

al., 2009), which can be grouped into 10 higher-level,
superordinate categories: “mammal,” “bird,” “insect,”
“fruit,” “vegetable,” “vehicle,” “container,” “kitchen
appliance,” “musical instrument,” and “tool’. This
dataset includes both inanimate and animate categories
and both natural and human-made categories, thereby
making the taxonomic structure more representative
of human conceptual knowledge. See Supplementary
Material (SM1) for a full list of categories used,
with their corresponding labels. For testing, we used
the same 30 categories from the THINGS dataset
(Hebart, Dickter, Kidder, Kwok, Corriveau, Van
Wicklin, & Baker, 2019). We used different training
and testing datasets so as to exploit the behavioral
similarity ratings that we collected on the smaller

THINGS dataset. All images were zero-centered with
respect to the ImageNet images’ distribution (i.e.,
RGB color values for each image were subtracted
from the mean of the ImageNet training dataset), and
categorical cross entropy loss was used for all models
trained with labels. All parameter updates are done
using Adam optimization (Kingma & Ba, 2014), with
a mini-batch size of 64. Model training terminated
based on the results from the validation dataset, and
the model with the lowest validation loss was used for
all subsequent analyses performed on a given model’s
visual representations.

As shown in Table 1, the models trained with both
categories (basic-then-superordinate and superordinate-
then-basic) performed similarly at both basic and
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superordinate-level classification. The models trained
with a single type of label (basic or superordinate)
show relatively low performance at the level the model
was not trained on (e.g., basic only had 90% of the
superordinate-level prediction accuracy when using a
linear classifier, which is lower than the accuracy of
superordinate only, 93%).

Statistical analyses

Statistical comparison between models was made
using general linear mixed models (GLMMs) with
binomial error distributions from the lme4 package
(Bates, Maechler, Bolker, & Walker, 2015). Each
dependent variable, including stimuli items (e.g.,
images), participants, or both, were modeled as random
effects (Baayen, Davidson, & Bates, 2008) and other
independent variables of interest as fixed effects.
The detailed modeling and coding schemes for the
fixed effects are provided in each Results section. The
significance of the interactions between fixed effects was
checked by comparing the likelihoods of the models
with and without interaction terms, using the likelihood
ratio test. Random effects were set up to affect only
the intercepts, not the slopes, to allow a nonsingular fit
(Barr et al. 2013).

Experiment 1

In this experiment, we evaluated each model’s
robustness by measuring its recognition performance
of images subjected to various transformations. We
explored four types of image transformations: (1) affine
transformation (vertical and horizontal shift, rotation,
scale, and shear), (2) brightness, (3) salt-and-pepper
noise, and (4) Gaussian blur. Examples of each type and
level of transformation are shown in the Supplementary
Material (SM3).

Method

Because the original classification output from
the last Softmax layer is restricted to the categories
used for training (e.g., the basic only model can only
predict basic categories), we used the learned category
representations to estimate recognition accuracy on
both levels of categorical hierarchy by first extracting
prototypical representations for every class from
each model and then comparing these to the visual
representation extracted from a transformed image.
In the current analysis, a prototypical representation
is computed by taking a mathematical average of
all bottleneck features extracted from the images
in the training dataset that belong to the category

(Posner, 1970), a method widely used in vision models
(Snell, Swersky, & Zemel, 2017). These prototypical
representations were also used to predict human
similarity judgments in Experiment 5. We considered
recognition to be accurate when the highest cosine
similarity is achieved between a visual representation
extracted from a transformed image and the
corresponding prototypical categorical representation
generated from the ground truth class. For example,
if a model’s visual representation for a test image has
the highest cosine similarity with the prototypical
representation of its learned “banana” category, and if
the ground truth label is also “banana,” then the model
would be scored as recognizing the object correctly.
Differing levels of image transformations were applied
to our test dataset, with higher levels denoting more
extreme transformations.

Results and discussion

Visualizations of the models’ average recognition
accuracy are shown in Figure 2. Among the trained
models, superordinate-then-basic model (the purple
line) was consistently more accurate in recognizing
transformed images than any other models, where the
effect was most prominent in noise and blur conditions.
We observed that the superiority of superordinate-
then-basic model appears in both natural (e.g.,
“mammal,” “bird,” “insect,” “fruit,” “vegetable”) and
human-made categories (e.g., “vehicle,” “container,”
“kitchen appliance,” “musical instrument,” and “tool’),
whereas the effects were more pronounced in natural
categories that are generally known to have higher visual
consistency than artifact categories (Supplementary
Material, SM5). For statistical analysis, the recognition
accuracy on each testing image was modeled as a
function of training type and transformation level using
GLMMs with binomial family (see Statistical Analyses
in Method section for details). For the fixed effects, the
training types were coded using treatment contrasts
with basic only as the baseline, and transformation level
(0–6) was treated as a continuous variable.

A significant interaction between training type
and transformation level was observed in all image
transformations and taxonomic levels, where adding the
interaction term significantly improved the statistical
models (in superordinate-level recognition, χ2(3) =
23.12, p < 0.001 for affine transformation, χ2(3) =
62.95, p < 0.001 for brightness, χ2(3) = 132.12, p <
0.001 for noise; χ2(3) = 47.52, p < 0.001 for blur;
in basic-level recognition, χ2(3) = 11.83, p < 0.01,
for affine transformation, χ2(3) = 9.43, p < 0.05 for
brightness, χ2(3) = 43.51, p < 0.001 for noise, χ2(3) =
21.96, p < 0.001 for blur). This indicates that there are
significant differences in the robustness of our trained
models, as measured by recognition performance over
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Figure 2. Measuring the robustness of superordinate-level and basic-level recognition (rows) to four image transformations
(columns), with higher values along the x-axes indicating greater transformation applied to the image. Category recognition accuracy
(y-axes) based on cosine similarity between each model’s visual representation of a test image and its learned category prototype.
Appearing at the top of each column are examples of images with the highest-level transformation applied. Complete examples are
provided in the Supplementary Material. Error bars are SEM calculated over 467 testing images.

differing levels of distorted images. As shown in Table 2,
recognition performance for all trained models declined
sharply with increasing level of transformation,
indicated by negative coefficients of transformation
level, exposing the brittleness of CNN representations.
However, the degree of performance degradation
caused by image transformation depended on how the
models were trained. Superordinate-then-basic was
observed to be comparatively more robust for most
image transformation types, exhibiting both higher
intercept (recognition accuracy of images not subjected
to any transformation) and smaller decline in accuracy
as a function of transformation level (shown as positive
interaction terms), compared to other models.

Post-hoc pairwise comparisons with Bonferroni
corrections confirmed that when effects were collapsed
over differing levels of transformation, the recognition
performance of superordinate-then-basic model
was significantly superior to all other models for
most types of image transformations, especially for
noise and blur transformations (all comparisons
were significant with adjusted p < 0.05), and this
was true for both recognition at both the basic and
superordinate levels. For affine image transformation
and brightness change, the performance from
superordinate-then-basic was often on par with basic
only or basic-then-superordinate models (adjusted

p > 0.05). See Supplementary Material, SM4 for full
comparison results.

Experiment 2

We often perceive exemplars from one category of
object as more similar to each other and less similar
to exemplars from other categories (Harnad, 1987).
Given the variations that exist in object appearance,
such categorical perception helps to efficiently process
the visual features that are relevant to recognizing the
visual object. In this experiment, we examined the
extent to which visual representations learned by each
model are categorical (their “categorical separability”),
by measuring a visual similarity distance for objects
belonging to different categories compared to the
same category (Goldstone & Hendrickson, 2010).
We also compare t-distributed stochastic neighbor
embedding (t-SNE) visualizations of each model’s
visual representations.

Method

We estimated each model’s categorical separability
using a variation of the Davies–Bouldin index (Davies
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Affine transformation Brightness Noise Blur

b SE Z b SE Z b SE Z b SE Z

Superordinate-level recognition
Intercept (basic only) 3.32 0.15 22.35 2.91 0.17 17.26 2.19 0.16 14.11 3.84 0.19 20.26
Superordinate only 0.64 0.16 4.02 0.19 0.14 1.38 0.73 0.13 5.46 0.43 0.16 2.70
Basic-then-superordinate 0.54 0.16 3.42 0.16 0.14 1.17 0.51 0.13 3.90 1.18 0.17 6.91
Superordinate-then-basic 0.75 0.16 4.64 0.36 0.14 2.57 0.47 0.13 3.60 0.80 0.17 4.82
Transformation level −0.63 0.03 −22.64 −0.74 0.03 −25.61 −0.73 0.03 −25.60 −1.40 0.04 −34.09
Superordinate only ×

transformation level
−0.17 0.04 −4.20 −0.31 0.04 −7.53 −0.37 0.04 −9.21 −0.08 0.05 −1.67

Basic-then-superordinate ×
Transformation Level

−0.01 0.04 −0.34 −0.09 0.04 −2.24 −0.08 0.04 −2.19 −0.09 0.05 −1.69

Superordinate-then-basic ×
Transformation Level

−0.11 0.04 −2.76 −0.06 0.04 −1.55 0.06 0.04 1.51 0.22 0.05 4.40

Basic-level Recognition
Intercept (basic only) 2.52 0.14 18.27 1.88 0.14 13.55 1.51 0.14 10.45 2.44 0.14 17.31
Superordinate only −1.31 0.13 −10.07 −0.98 0.12 −7.86 −0.71 0.13 −5.64 −1.12 0.14 −8.28
Basic-then-superordinate −0.41 0.13 −3.06 −0.29 0.12 −2.33 −0.02 0.13 −0.19 −0.10 0.14 −0.69
Superordinate-then-basic 0.02 0.14 0.11 −0.01 0.13 −0.08 0.03 0.12 0.24 0.24 0.14 1.70
Transformation level −0.69 0.03 −25.68 −0.83 0.03 −28.48 −0.81 0.03 −27.24 −1.23 0.04 −32.77
Superordinate only ×

Transformation level
0.11 0.04 3.22 0.03 0.04 0.78 −0.03 0.04 −0.74 0.19 0.05 4.07

Basic-then-superordinate ×
Transformation level

0.09 0.04 2.60 0.09 0.04 2.39 −0.06 0.04 −1.42 0.14 0.05 2.99

Superordinate-then-basic ×
Transformation Level

0.05 0.04 1.49 −0.02 0.04 −0.50 0.17 0.04 4.58 0.19 0.05 4.06

Table 2. Results from GLMMs predicting recognition accuracy. Training type and transformation level, and their interactions were
modeled as fixed effects, and testing images (n = 467) were treated as random effects (see Method for details). Significant z-scores
are in bold (adjusted p < 0.05).

& Bouldin, 1979). This index takes into account the
ratio of two components: (1) the distance between
visual representations of objects from different
categories (between-class dispersion), and (2) how
closely the visual representations of objects within
the same category are located in the representational
space (within-class dispersion). To measure the visual
similarity between exemplars, the cosine similarity
was calculated on the “bottleneck” features extracted
from each exemplar image in the testing dataset.
To visually compare how tightly clustered are the
visual representations within each category, we
projected high-dimensional visual feature vectors into
hundred-dimensional space using principal component
analysis (PCA), and further projected them into
two-dimensional space using t-SNE with the perplexity
of 50 with random initialization, with maximum
iteration of 1000 (Maaten & Hinton, 2008).

Results and discussion

According to one-way analysis of variance, category
separability did not significantly differ between

different training schemes in either the basic and
superordinate-levels , F(3,116) = 1.07, p > 0.05, and
F(3,36) = 0.79, p > 0.05, respectively. This finding is
particularly interesting given the coarse training of the
superordinate only model. Indeed, superordinate only
showed categorical separability at the basic level as well,
despite never being trained on basic-level categories,
and its score was even comparable to that of the basic
only model. The model trained with basic labels before
training with superordinate labels had numerically
higher categorical separability for visual representations
at both the basic and superordinate hierarchical levels
(see Table 3), but the differences were not significant
(adjusted p > 0.05).

Similar patterns can be observed from an inspection
of the t-SNE visualizations of each model’s visual
representations. In Figure 3, each data point indicates
a visual representation of a testing image projected
in two-dimensional space. Note that colors in the
figure are coding the ground truth labels for the testing
dataset and are not available to the t-SNE visualization
algorithm. The trained models produced basic-level
and superordinate-level category structure in their
representations, which are signified as clusters having
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Superordinate-level
separability

Basic-level
separability

Basic only 1.10 (0.06) 1.73 (0.07)
Superordinate only 1.23 (0.10) 1.64 (0.07)
Basic then superordinate 1.29 (0.12) 1.82 (0.09)
Superordinate then basic 1.20 (0.07) 1.79 (0.07)

Table 3. Category separability (Inverse of Davies-Bouldin Index)
of visual representations for each model, with higher values
indicating greater categorical separability, for example, greater
dissimilarity of visual representation between different
categories compared to similarity of visual representations
within the same category. Standard errors are calculated over
all categories at each taxonomic level and reported in the
parentheses.

the same color in the t-SNE plots. There is even
evidence for some hierarchical structure as well, for
example, the three small groups of light blue dots
corresponding to “lion,” “gazelle,” and “orangutan”
exemplars within the global “mammal” cluster in the
basic-then-superordinate and superordinate-then-basic
models. Again remarkably, training only with
superordinate categories allows the model to learn
considerable structure at the basic level.

Experiment 3

Previous research suggests that a CNN’s classification
is heavily influenced by differences in texture whereas
human object recognition is much more reliant on
overall shape information (Baker, Lu, Erlikhman, &
Kellma, 2018; Geirhos, Rubisch, Michaelis, Bethge,
Wichmann, & Brendel, 2019). This experiment
examined how biased our trained models became in
using shape versus texture when recognizing images
with swapped (transferred) texture information (see
Method for details).

Method

We created texture-transferred testing images where
the original object’s shape is preserved, but the texture
is replaced with that of other categories using AdaIN
style transfer (Huang & Belongie, 2017; Geirhos
et al., 2019; See Figure 4A for an example image)
and calculated each model’s shape bias index. Here
we define shape bias as the relative proportion of
images that are classified according to its shape with
respect to all images either classified by their shape or
texture. If shape bias is above 0.50, the model prefers
to use shape information rather than texture during
recognition. Each model’s recognition was generated
using the same method used in testing recognition

robustness, by finding the category whose prototypical
categorical representation has the highest cosine
similarity with a visual representation extracted from a
texture-transferred image.

Results and discussion

Figure 4C suggests that our trained models have
different levels of shape bias for object recognition.
Overall, the models supervised with hierarchical
categorical labels produced higher shape bias than
models trained with a single level of hierarchy, such as
superordinate only or basic only. In particular, when
recognition was performed at the basic-level (second
row in Figure 4), the superordinate-then-basic model
was shown to be the most shape-biased, whose shape
bias score reflected an actual shape bias rather than
a bias to use texture. This pattern was confirmed by
statistical analysis, where GLMMs with binomial family
were used to model the recognition accuracy on each
testing image as a function of training type, which were
coded using treatment contrasts with basic only as the
baseline (see Statistical Analyses in Modeling Method
section for details).

A significant main effect of training type on shape
bias was observed in both levels of recognition (χ2(3) =
111.55, p < 0.001 for superordinate-level recognition;
χ2(3) = 129.07, p < 0.001 for basic-level recognition).
Although none of trained networks were biased to use
shape rather than texture information in superordinate-
level recognition models, when recognition was
performed at the basic-level, superordinate-then-basic
(0.59) and basic-and-superordinate (0.55) achieved
a shape bias score higher than 0.50, which indicates
a preference for these two models to use shape than
texture information when recognizing visual objects,
as humans do. Post-hoc comparison with Bonferroni
adjustments also confirmed that superordinate-then-
basic achieved the highest shape bias compared to
any other trained model in basic-level recognition,
and all comparisons were statistically significant (Zratio
= 9.32, p < 0.001 from basic only; Zratio = 9.29, p <
0.001 from superordinate only; Zratio = 3.42, p < 0.001
from basic-then-superordinate). Shape bias scores for
individual basic-level categories were also reported in
the Supplementary Material SM12.

Experiment 4

In this experiment, we evaluated the model’s ability
to predict patterns of neural activity, as measured by
fMRI in humans, elicited by the same images shown to
the model during training. This was made possible by
a publicly-available human fMRI dataset, BOLD5000
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Figure 3. The t-SNE Visualizations of image representations extracted from the trained models. The same feature distribution for each
model is color-coded differently by superordinate-level labels (first column) and basic-level labels (second column). Best viewed in
PDF form with magnification.
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Figure 4. Shape versus texture biases. (A) An example of texture transfer using AdaIN style transfer (Huang & Belongie, 2017). (B)
Average recognition accuracy on the texture transferred images for basic and superordinate category classifications. Shape Match:
Recognition accuracy when ground-truth categories are based on an object’s shape (original image’s identity); Texture Match:
Recognition accuracy when ground-truth categories are based on an object’s texture (texture image’s identity). (C) Shape Bias:
Relative proportion of images that are correctly classified according to its shape with respect to all images classified either by its
shape or texture. To the extent that the Shape Bias score is above 0.50, the model is shape-biased; to the extent that a model is below
0.50, it is texture-biased. All pairwise comparison with Bonferroni corrections were statistically significant at p < 0.05 unless specified
as n.s.

(Chang et al., 2019), which consisted of neural data
collected on more than 5000 images from datasets
commonly used for training computer vision models
(e.g., ImageNet, COCO, SUN datasets).

The fMRI data

BOLD5000 is a large-scale publicly-available dataset
(Chang et al., 2019) consisting of slow event-related
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Figure 5. Pearson correlation between RSMs computed for human fMRI activation and each model. Human RSM was calculated by
taking an average of RSMs over all participants (n = 3). Error bars denote the standard error of the Pearson correlation coefficient.
Four different brain ROIs were included in the analysis: earlier visual cortex, including V1 or V2 in the right and left hemisphere
(RHEarlyVis and LHEarlyVis, respectively), and LOC in the right and left hemisphere (RHLOC and LHLOC, respectively). All correlation
coefficients were significant at 0.05 alpha level. Significance of pairwise differences from post-hoc analyses were signified as arrows
and asterisks above the corresponding bars (* adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001).

fMRI data collected while people viewed 5000
naturalistic images. For the purpose of our study,
we only analyzed the neural data recorded for the
ImageNet images corresponding to the 30 basic-level
categories used to train our models. There were two
exemplar images for each category on which blood
oxygenation level–dependent (BOLD) activation levels
were recorded, and a simple average of these two
BOLD signals was taken to represent each individual’s
categorical visual representation. These categorical
visual representations extracted from fMRI data
were used to calculate a representational similarity
matrix (RSM) comparing the human brain and CNN
activation. The full list of image names and their URLs
are shared in the Supplementary Material (SM8).
Recordings were made from four participants in the
original dataset, but we excluded the data from one
participant because that person did not complete the
entire experimental sessions, and consequently did
not view all 30 of our categories of interest. Each
image was displayed for one second, followed by a
nine-second fixation cross (sampling rate of 0.5 Hz,
i.e., TR = 2000 ms), and BOLD signals were recorded
during this time (Chang et al., 2019). Brain activity
was found to peak from four to eight seconds, so we
averaged BOLD signals over TR3 and TR4 and used
these for comparison to the models. Whole brains were
scanned in the original dataset, but we selected two
regions of interest (ROIs) for our analyses. These were
early visual cortex and the lateral occipital complex
(LOC), brain regions at different levels in the ventral
visual stream that are known to play an important
role in the recognition of visual objects (Grill-Spector,

Kourtzi, & Kanwisher, 2001). Complete descriptions
of the experimental design, fMRI recording, and
preprocessing pipeline can be found in the original
dataset study (Chang et al., 2019).

Method

Architectural and dimensional differences between
a CNN and visual cortical responses (human vision)
prevent direct comparison of the prototypical
representations from the models to the fMRI responses,
so to make this comparison we used RSM. RSM is
a method initially developed to compare patterns
generated from different agents, for example, comparing
activation from a human to the neural activity patterns
from a monkey (Kriegeskorte, Mur, & Bandettini,
2008). We created a similarity matrix for each model
and each brain ROI, where each entry in the RSM
was calculated by taking a Pearson correlation
between the visual representations of the 30 basic-level
categories. We then directly compared how similar their
representational patterns were by calculating a Pearson
correlation between the two RSMs, one from human
fMRI responses and the other from a model’s visual
prototype representation (See Experiment 1 Method
for details).

Results and discussion

We computed an RSM (see Method section for
details) for each model and fMRI participant, and
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computed the Pearson correlation between the two
matrices. Doing this for each brain ROI for all three
participants and then averaging RSMs over participants
gives a value that we will refer to as human RSM.
Visual comparison between RSMs from each model
and humans are provided in the Supplementary
Material (SM9). Overall, as shown in Figure 5,
superordinate-then-basic again showed the highest
similarity, this time in brain activation across different
ROIs (average r = 0.538, all p < 0.05). This was followed
by basic-then-superordinate (average r = 0.503, all p <
0.05) and basic only (average r = 0.496, all p < 0.05).
Superordinate only showed the lowest similarity with
humans among the models trained with categorical
labels (average r = 0.422, all p < 0.05). To test whether
these correlations are statistically different from one
another, we conducted post-hoc pairwise comparisons
on the Fisher Z-transformed correlation coefficients,
with Bonferroni corrections. Across all brain ROIs
in both hemispheres, superordinate-then-basic
was the only model whose similarity with human
visual representations was significantly higher than
superordinate only (Zdiff = 3.15, adjusted p < 0.05
in RHEarlyVis; Zdiff = 3.54, adjusted P < 0.001 in
LHEarlyVis; Zdiff = 3.19, adjusted p < 0.01 in RHLOC;
Zdiff = 3.13, adjusted p < 0.05 in LHLOC). Other
pairwise comparisons made between the models trained
with categorical labels did not show any statistically
significant differences (adjusted p > 0.05). The higher
neural correspondence of superordinate-then-basic
model was observed in both natural and human-made
categories (see Supplementary Material SM10).

Experiment 5

This experiment evaluated how well models produce
human-like visual judgments in a triplet similarity task.
In this task, the participant had to select one image that
they judged to be the most different among three images
of objects shown simultaneously on each trial. We
reasoned that this task might engage the human visual
representations used in perceptual decision making,
thereby providing a salient representational signature
in behavior as shown in Hebart, Zheng, Pereira, and
Baker (2020). We also wanted a behavioral performance
measure to provide contrast to the neural performance
measure, in the hope of finding converging evidence for
one model or another.

Behavioral data

We collected human similarity judgments in an
odd-one-out task, where participants were shown three
object images of and asked to choose which was most

different from the other two. This paradigm (Roberson,
Davidoff, & Braisby, 1999; Zheng et al., 2019) is
especially well suited for our goal because we can select
the objects in this task to differ in their level in the
semantic hierarchy. We did this by varying the number
of unique superordinate categories that appeared in a
triplet. For example, when all three images in a triplet
come from the same superordinate category (e.g.,
“lemon,” ”orange,” “banana”), the perceived similarity
will be compared at the basic level. However, when only
two images in a triplet belong to the same superordinate
category (e.g., “lemon,” “orange,” “minivan”), the
semantic oddity of the other image will focus the
similarity comparison at the superordinate level. Each
triplet consisted of three exemplar objects from the 30
categories used for our model training. All exemplar
images came from Zheng et al. (2019), except for
“crate,” “hammer,” “harmonica,” and “screwdriver,”
which were replaced with new exemplars to improve
image quality and category representativeness. There
are 4060 possible triplets that can be generated from
all 30 categories, but constraints on behavioral data
collection required that we sample only a subset of
these. This subset included (1) the ten triplets having
objects coming from the same superordinate category
(e.g., mammals: “orangutan,” “lion,” “gazelle”), (2)
all 435 triplets where two objects came from the same
superordinate category (e.g., “orangutan,” “lion,”
“minivan”), and (3) 1375 triplets where all objects
came from different categories (e.g., “orangutan,”
“minivan,” “lemon”), yielding 1820 unique triplets in
total. Participants were 51 Amazon Mechanical Turk
workers, each making responses on ∼200 triplets (5%
, 42%, and 52% of these triplets belong to the subsets
1, 2, and 3, respectively). After removing responses
having reaction times below 500 ms, we obtained 9697
similarity judgments where each unique triplet was
viewed by 5.6 workers on average.

Method

We simulated responses from each model to each
image triplet by calculating cosine similarities between
the prototypical category representation for each
image and selecting the one most dissimilar from the
other two. We computed a lower bound of accuracy
(Null accuracy), achieved by predicting every sample
with the people’s most frequent choice for the entire
dataset, and the effective upper bound (Bayes accuracy)
achieved by predicting people’s most frequent choice
for each unique triplet. We also report predictions from
the SPoSE model (Zheng et al., 2018), where human
categorical representations (49 dimensional vectors) are
parameterized and estimated from human similarity
judgments collected on the entire 1854 categories from
the THINGS dataset (Hebart et al., 2019).
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Figure 6. Average prediction accuracy (y-axis) for human similarity judgments for each triplet type according to the number of unique
superordinate categories in the triplet (1, 2, or 3, x-axis). For the middle condition, a correct response can be made on the basis of
which item is from a different superordinate category. Error bars represent standard errors. Null and Bayes accuracy constitutes the
lower and upper bounds of performance, respectively. The SPoSE model is the representational embedding model trained on
behavioral data collected from Zheng et al. (2018).

Results and discussion

We used GLMMs with binomial family (see
Statistical Analyses in Modeling Method section for
details), predicting accuracy from triplet-type and
model-type. Seven different models (3 baselines + 4
trained models) were coded using treatment contrasts
with the Null model (lower limit of performance) as
the reference group. Triplet types were also coded
using treatment contrasts and the triplet where only
two images belong to the same superordinate category
(e.g., “lemon,” “orange,” “minivan”) was treated as the
reference condition.

Both interaction and main effects for model and
triplet type were significant, evidenced by the addition
of the corresponding term significantly increasing the
likelihood of the statistical model (χ2(12) = 1880.05,
p < 0.001 for the interaction effect, χ2(2) = 355.61,
p < 0.001 for the triplet-type main effect, χ2(6) =
9367.70, p < 0.001 for the model-type main effect;
full coefficient estimates and their significance from
the model with an interaction term are provided in
the Supplementary Material (SM13). Comparison of
marginal means of triplet prediction accuracy estimated
from the mixed model in Figure 6 suggests that our
trained models predicted human similarity judgments
very well, considerably better than Null accuracy.
Performances from some of these models were observed
to be comparable to the mathematical upper limit
(Bayes model) and even the model directly trained
with behavioral data (SPoSE model), especially in the
condition where there were two unique superordinate

categories in a triplet (second column in the
figure).

Post-hoc analysis with Bonferroni corrections
confirmed these observations. When a triplet consisted
of two unique superordinate categories, resulting in the
creation of a semantic oddity at a superordinate-level
(e.g., “lemon,” “orange,” “minivan”), the models
trained with superordinate labels (superordinate
only, superordinate-then-basic, and basic-then-
superordinate) achieved about 90% prediction accuracy,
which was not statistically different from Bayes (92%)
and SPoSE model (90%; adjusted p > 0.05). Basic only
had an accuracy of 87%, which was significantly lower
than both the Bayes and SPoSE models (Zratio = −16.31
adjusted p < 0.001; Zratio= −9.35, adjusted p < 0.001;
respectively).

Similar trends were observed in a condition where
all items in a triplet came from different superordinate
categories (e.g., “orangutan,” “minivan,” “lemon”).
Although performances of these trained models were
generally poorer than the upper baselines, Bayes (80%)
and SPoSE (75%), superordinate only achieved the
best accuracy (63%) among the trained models, and
this accuracy was significantly higher than basic only
(59%; Zratio = 5.12, adjusted p < 0.001). There were
no statistically meaningful differences between the
superordinate only, superordinate-then-basic, and
basic-then-superordinate models (adjusted p > 0.05).
The models whose training included superordinate
labels benefited specifically for triplets in which the
correct (typical human) response was made on the basis
of which image was from a different superordinate
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category. When all three images in a triplet came
from the same superordinate category (e.g., “lemon,”
“orange,” “banana”), we expected that perceived
similarity would be compared at the basic level and
the models primarily trained with basic-level labels
might show an advantage. Surprisingly, experience
with superordinate labels was helpful here too,
numerically increasing accuracy from 56% obtained
by the basic only condition to 62% obtained by
both the basic-then-superordinate model and the
superordinate-then-basic model. Training with just
the Superordinate labels achieved a comparable 59%
(adjusted p for comparisons of label-training conditions
> 0.05).

Summary and general discussion

Despite the remarkable progress in using deep CNNs
for classifying images (Rawat & Wang, 2017), their
performance still pales in comparison to the robustness
of human recognition, which has an outstanding
tolerance to changes in object appearances, such as
changes in position and size (Ito et al., 1995; Rust
& DiCarlo, 2010), viewing direction (Biederman
& Gerhardstein, 1993; Vuilleumier et al., 2002),
illuminations (Vogels & Biederman, 2002), and contrast
(Avidan et al., 2002; Rolls & Baylis, 1986). The aim
of the current study was to understand the possible
role of category labels in learning more robust visual
representations. We hypothesized that the semantic
structure of category labels, which is often provided by
the labeling hierarchy of our language, contributes to
learning flexible and robust categorical representations
in humans. To test this idea, we trained multiple
CNNs with the same architecture on different types of
category labels and conducted an extensive analysis to
test the robustness of the visual representations learned
by each model. We also identified the models generating
the most human-like fMRI and behavioral data during
visual tasks.

We found that the models trained with labels at basic
and superordinate levels of abstraction learned more
robust category-diagnostic visual features compared to
models trained at only a single level of abstraction (i.e.,
only basic or only superordinate). The robustness of
the superordinate-then-basic model was particularly
impressive, which consistently achieved a significantly
higher recognition accuracy than other models over
various visual transformations, including changes of
position/rotation, illumination, noise, and blurriness.
Consistent with this finding, superordinate-then-basic
achieved the highest shape bias among our trained
models, signifying the model’s relatively high tolerance
to textural changes. We found that categorical
separability for basic-then-superordinate was higher

than superordinate-then-basic and other models
trained at a single taxonomic level, but these differences
were not statistically significant. Previous studies
demonstrated that learning non-visual semantic
relationships between novel objects, such as one object
being “sticky, loud, and nocturnal” and another
object being “strong, soft, and friendly” made visual
recognition of those objects less viewpoint dependent
(Collins & Curby, 2013; Curby et al., 2004). Here
we extend these previous findings by showing that
learning a taxonomic structure, a basic human semantic
association, can also drive significant improvement in
visual object recognition.

We also determined the types of labels used for
model training that resulted in the learning of visual
representations that were most comparable to those of
people. We did this by analyzing the representational
similarities (Kriegeskorte et al., 2008) between our
trained models and visually-evoked responses obtained
from the human visual cortex and by comparing the
models with respect to their prediction of similarity
judgments obtained by people performing an odd-one-
out triplet task. Consistent with the robustness analysis
above, we found that the superordinate-then-basic
model learned representations that were most similar to
the visual representations formed across different ROIs
in visual cortex, including early visual cortex and LOC
that are known to contribute to the identity-preserving
visual representation of objects (DiCarlo et al., 2012;
Grill-Spector et al., 2001).

We also used our models to predict which image
out of three is the most visually different according
to people’s judgments (Odd-one-out triplet task).
The models trained with superordinate labels
(superordinate-only, superordinate-then-basic, and
basic-then-superordinate) achieved the highest
prediction accuracy (∼ 90%) for triplets consisting of
two unique superordinate categories (e.g., “drum,”
“harmonica,” “refrigerator”). For these trials, both
people and the models tended to choose the image
with the different superordinate category. Because
superordinate-level knowledge is all that is required
to answer these trials “correctly,” it is not surprising
that models trained with just superordinate labels were
successful. What is surprising is that the superordinate-
only training also led to successful performance in other
conditions in which each image was from a different
superordinate-level category (e.g., “ant,” “hammer,”
“lemon”) or the same superordinate-level category
(e.g., “coffee-pot,” “refrigerator,” “toaster’). The model
trained only on superordinate class labels was not only
more sensitive to global class distinctions compared
to models trained on just basic-level labels, but it
learned enough within-class structure to predict the
performance of people making odd-one-out judgments
at the basic-level (when the triplets come from the
same superordinate category). Indeed, the model
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trained only with superordinate-level labels showed
considerable basic structure in their learned visual
representations according to the t-SNE visualizations,
and also performed quite well in classifying basic-level
categories (accuracy of 80% when using a linear
classifier; Table 1).

Previous studies in computer vision have reported
that training with basic-level labels (e.g., dog) helps
classifying the finer-grained, subordinate-level objects
(e.g., breeds of dog) and attributed the observed
benefits to the inherent characteristics of basic-level
labels (e.g., informativeness; Peterson et al., 2018; Wang
& Cottrell, 2016). Our study suggests that this benefit is
not specific to learning basic-level categories but rather
reflects a more general advantage of training with
coarser-grained labels on fine-grained classification
tasks. This idea is further supported by our additional
observation of training benefits from superordinate-
level labels even when the superordinate categories do
not represent the actual semantics of the language.
We first trained the model with randomly mixed and
thus semantically meaningless superordinate category
labels (e.g., “flute,” “lemon,” “lion” would make a new
superordinate category A) and then trained with the
original 30 basic labels in a second stage. We found
that this “superordinate-mixed-then-basic” model
performed very well, at times even being comparable
to the original superordinate-then-basic model in
terms of representational robustness (Supplementary
Material, SM6) and correspondence with human brain
representations (Supplemental Material, SM11). These
findings suggest that training with coarse-level structure
is generally helpful in learning more robust and
more human-like visual representations of finer-level
categories.

Since the seminal work by Rosch et al. (1976), the
basic-level advantage has been one of the most-cited
and well-known concepts in cognitive psychology. Basic
labels are assumed to be easier to learn and access,
and for these reasons basic-level object representations
dominate our everyday interactions with objects.
Mervis and Crisafi (1982) studied how children acquire
categories across different hierarchical levels and
found higher classification accuracy for basic-level
categories compared to superordinate-levels. The
authors explained their result by appealing to the
relatively low within-category similarity between
superordinate-level categories making it difficult to
learn the visual regularities needed to group objects
at that level compared to at the basic level. However,
when we put this idea to the test, the computational
experiments from our study suggest the greater visual
heterogeneity at the superordinate level may serve a
purpose: the supervised learning of superordinate-level
categories before basic-categories may improve the
robustness of visual recognition compared to training
with basic labels alone. In future work we hope to

validate the existence of this coarse-to-fine advantage
in human visual category learning by testing whether
training novel categories with superordinate labels
before basic labels increases the visual recognition
performance on both unseen and distorted test images.

Why does training with labels spanning levels of
abstraction—particularly beginning with superordinate
labels and proceeding to basic-level ones—lead to more
robust visual representations? One possibility is that,
because shared features within superordinate categories
are not as salient as in basic-level categories, training
with superordinate-level categories first may promote
finding features (i.e., regions of the representational
space) that are diagnostic of to-be-learned category
distinctions (Damiano & Walther, 2019). On the other
hand, because the extraction of diagnostic features
of basic-level categories is relatively easy (Mervis &
Crisafi, 1982; Rosch et al., 1976), training on basic-level
categories may discourage exploration by focusing
one’s attention more narrowly on the selection of
categorical features. Previous studies found that,
whereas selective attention enables efficient encoding of
stimuli by ignoring category-irrelevant information, a
negative consequence of this “learned inattention” is a
muted exploration of newly relevant visual features in
subsequent learning (Blanco & Sloutsky, 2019; Hoffman
& Rehder, 2010), which might have implications for the
learning of robust object representations.

One major limitation of our study is that the
models we tested are still far from achieving
human-like robustness. Although we found that the
superordinate-then-basic network was the generally
best-performing model, it was still highly vulnerable
to image transformations, with recognition accuracy
dropping by ∼50% despite levels of changes that are
visually insignificant to us (see Supplementary Material,
SM3 for examples of images with transformations
applied). Note also that the CNNs in our study all had
a simple feedforward architecture and used far fewer
trainable parameters (∼1 million) than what is typical
in the Computer Vision literature (e.g., ResNet50, ∼23
million). We decided for this simplified architecture
to more effectively model and analyze the effects
of various labelling schemes on the learned visual
representations. However, future studies should confirm
whether our results generalize to more complex models
trained with larger datasets and test whether the use of
superordinate-level training in state-of-the-art vision
models further reduces the robustness gap between
humans and CNNs. One obstacle slowing progress
toward this future direction is the unavailability of
a dataset having sufficient superordinate labels for
model training. Although superordinate-level concepts
have long been considered one of the most basic and
inherent structures of human semantic knowledge,
together with basic-level categories (Murphy, 2016),
there does not yet exist a dataset structured as such. For
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example, ImageNet 2012 (Deng et al., 2009) is one of
the most commonly used datasets for training computer
vision models, but most of the 1000 categories in
ImageNet come from subordinate-level labels, including
120 different dog breeds. We hope that our findings
pointing to a superordinate-level training benefit will
fuel additional effort into creating a dataset having a
more carefully designed semantic structure.

We also investigated how the various label-training
conditions compared to conditions lacking supervision
from labels altogether, that is, learning categories
only from the visual structure. Previous behavioral
findings showed that the categorical distinctions
made by linguistic labels facilitate the extraction of
categorical diagnostic features, as well as the abstraction
over irrelevant perceptual information (Althaus &
Mareschal, 2014; Edmiston & Lupyan, 2015; Levin &
Beale, 2000; Lupyan, Rakison, & McClelland, 2007;
Macpherson, 2012; Meteyard, Bahrami, & Vigliocco,
2007; Thierry, Athanasopoulos, Wiggett, Dering, &
Kuipers, 2009). The success of recent unsupervised
methods in computer vision (e.g., contrastive learning;
Chen, Kornblith, Norouzi, & Hinton, 2020) suggests
that exposure to category labels may not be necessary
to learn effective visual representations for human-like
classification (Konkle & Alvarez; 2020). Indeed, when
we put “SimCLR-Resnet50” unsupervised learning
model to the test (Supplementary Material SM7),
its recognition was generally more robust to image
transformation than our supervised models (except for
salt-and-pepper noise, where our supervised models
performed better). However, other differences between
these models make a direct comparison currently
impossible, making it difficult to ascertain the limits
of unsupervised training for learning visual structure
from visual input alone. Notably, SimCLR–the
currently state of the art in unsupervised image
category learning–was trained using a more complex
convolutional architecture than our supervised models,
and was also trained on a much larger dataset (1000
Imagenet categories). When these factors are controlled
(e.g., “Conv. AutoEncoder” or “SimCLR-Matched” in
the Supplementary Material SM7), the unsupervised
models performed far worse than the supervised model.
Recent work directly comparing visual representations
learned using SimCLR to those that emerge when
unsupervised structure is fine-tuned with category
labels shows that the latter experience leads to more
human-like categorical structure (Luo, Sexton, & Love,
2021). More systematic and controlled experiments
will be required to better understand the unique
role of category labels on learning robust visual
representations.

In this study we explored the effects of linguistic
taxonomy on the visual representations learned by
CNNs and found that training across a hierarchy,
especially in the superordinate-then-basic order,

resulted in the learning of robust and human-like visual
representations. Consistent with previous findings
showing a benefit of learning semantic associations
between categories, our results suggest that learning
object associations across a simple taxonomic hierarchy
can similarly mitigate the challenges imposed on visual
object recognition by the various visual transformations
imposed by nature on the appearance of objects.
Understanding the superior efficiency and flexibility of
the human visual system relative to existing artificial
systems will likely require extending beyond traditional
behavioral science, into domains such as computer
vision and robotics. Our work suggests that the semantic
structure of labels and datasets should be carefully
constructed if the goal is to build vision models that
learn visual feature representations having a human-like
tolerance to variability. Future research should test
whether the benefits of superordinate-then-basic
training that we observed here in computational models
translates into improved category learning in people.

Keywords: visual object recognition, robustness,
CNNs, superordinate labels
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