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Representations of visual and semantic information can
overlap in human visual cortex, with the same neural
populations exhibiting sensitivity to low-level features
(orientation, spatial frequency, retinotopic position) and
high-level semantic categories (faces, scenes). It has
been hypothesized that this relationship between
low-level visual and high-level category neural selectivity
reflects natural scene statistics, such that neurons in a
given category-selective region are tuned for low-level
features or spatial positions that are diagnostic of the
region’s preferred category. To address the generality of
this “natural scene statistics” hypothesis, as well as how
well it can account for responses to complex naturalistic
images across visual cortex, we performed two
complementary analyses. First, across a large set of rich
natural scene images, we demonstrated reliable
associations between low-level (Gabor) features and
high-level semantic categories (faces, buildings,
animate/inanimate objects, small/large objects,
indoor/outdoor scenes), with these relationships
varying spatially across the visual field. Second, we used
a large-scale functional MRI dataset (the Natural Scenes
Dataset) and a voxelwise forward encoding model to
estimate the feature and spatial selectivity of neural

populations throughout visual cortex. We found that
voxels in category-selective visual regions exhibit
systematic biases in their feature and spatial selectivity,
which are consistent with their hypothesized roles in
category processing. We further showed that these
low-level tuning biases are not driven by selectivity for
categories themselves. Together, our results are
consistent with a framework in which low-level feature
selectivity contributes to the computation of high-level
semantic category information in the brain.

Introduction

Cortical responses to visual inputs demonstrate
organization according to both high-level and low-level
stimulus properties. High-level information about
images, such as their membership in semantic categories,
is reflected in the activation of spatially localized areas
of the ventral visual cortex selective for categories
such as faces, body parts, places, food, and words
(Downing et al., 2006; Epstein & Kanwisher, 1998;
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Jain et al., 2023; Kanwisher et al., 1997; Khosla et
al., 2022; McCandliss et al., 2003; Pennock et al.,
2023; Sergent et al., 1992). At the same time, low- and
mid-level visual features also elicit topographically
regular patterns of activation in visual cortex, such as
retinotopic maps of spatial position (Arcaro et al., 2009;
Sereno et al., 1995; Swisher et al., 2007) and large-scale
maps of selectivity for orientation (Freeman et al., 2011;
Issa et al., 2000; Sasaki et al., 2006), spatial frequency
(Aghajari et al., 2020; Bonhoeffer & Grinvald, 1991),
color (Conway & Tsao, 2009; Zeki, 1973), and curvature
(Yue et al., 2014; Yue et al., 2020). Given the hierarchical
nature of processing in the visual system, understanding
the relationship between selectivity for features at these
different levels of complexity is critical for explicating
the neural mechanisms by which high-level category
information is computed in the brain.

Past work has suggested that low-level and
high-level selectivity may be intertwined in their neural
organization, in that category-selective visual regions
exhibit systematic biases toward particular low-level
properties of the visual environment. Not surprisingly,
the low-level visual features most strongly represented
in a given category-selective region tend to reflect
the image statistics of the category in question. For
example, scene-selective cortical regions, such as the
parahippocampal place area (PPA), have been shown to
be more responsive to cardinal (vertical and horizontal)
orientations and rectilinear contour features than
diagonal orientations and curved contours (Nasr et al.,
2014; Nasr & Tootell, 2012; Li & Bonner, 2022). PPA
has also been shown to be biased toward high spatial
frequencies over low (Rajimehr et al., 2011). In contrast,
areas of the visual system selectively responsive to
faces have been shown to overlap with selectivity for
curved features (Srihasam et al., 2014; Yue et al.,
2014; Yue et al., 2020), and these face-selective areas
may be more responsive to low spatial frequencies
(Rajimehr et al., 2011). In addition to feature selectivity,
spatial selectivity also appears to covary with category
responsiveness, with face-selective and word-selective
cortical regions tending to have biases toward the
central visual field and scene-selective cortical regions
tending to have more peripheral biases (Hasson et al.,
2002; Levy et al., 2001).

A unifying explanation for these findings is based
on the observation that, as mentioned, for many
categories of natural images, the statistics of low-level
visual features differ depending on the semantic
content of images (Oliva & Torralba, 2001; Torralba
& Oliva, 2003). For example, large-scale outdoor
scene images are dominated by horizontal orientations
and high spatial frequencies, while close-up images
of objects may have a more isotropic distribution of
orientations and more energy at low spatial frequencies
(Torralba & Oliva, 2003). Beyond spectral features,
mid-level features like the overall curvature in an

image may covary with object-level distinctions such
as real-world size and animacy (Long et al., 2016;
Long et al., 2017). Such statistical associations may be
reflected in the organization of visual cortex due to
learning—either over the course of evolution or during
an individual’s lifetime. These observations suggest
that category-selective visual regions follow a principle
whereby they are biased in favor of low-level image
properties that are informative for their “preferred”
category, and these biases may play a functional role in
both learning and categorization (Op de Beeck et al.,
2008, Bracci et al., 2017).

Supporting the hypothesis that image statistics
constrain the low-level biases found in category-selective
visual cortex, the selectivity for cardinal orientations
and rectilinear contours in scene-selective visual areas
has been related to the fact that scene stimuli contain
more cardinal orientations and rectilinear angles than
nonscene stimuli (Nasr et al., 2014). A similar idea
may hold for color selectivity, based on the finding
that color tuning of neurons in ventral object-selective
cortex is biased in favor of colors that are associated
with objects (Rosenthal et al., 2018). Biases in spatial
coverage of the visual field may also be understood
in this framework; for example, the central (foveal)
eccentricity biases found in face- and word-selective
cortical regions may be related to the use of high spatial
frequency information in identifying these classes of
stimuli and the fact that they tend to be foveated,
leading to an association with the central visual field
(Hasson et al., 2002; Levy et al., 2001).

While these results provide some insight into the
origins of low-level biases in visual cortex, much of
the supporting work has focused on a small range of
visual stimulus classes, often using controlled synthetic
stimuli or objects on isolated backgrounds rather
than natural scenes (Hasson et al., 2002; Levy et al.,
2001; Nasr et al., 2014). In addition, there has been a
tendency to focus on only one brain region or a small
group of regions at a time (Hasson et al., 2002; Levy et
al., 2001; Li & Bonner, 2022; Nasr et al., 2014; Nasr
& Tootell, 2012). As a result, the generality of this
hypothesis is somewhat uncertain, particularly with
respect to how well it can account for findings across a
range of visual areas during naturalistic image viewing.
As an alternative, it has been suggested that semantic
category selectivity reflects representations at a high
level of abstraction only (Mahon & Caramazza, 2011).
That is, the critical dimension in the organization of
high-level visual cortex is category membership in
and of itself rather than selectivity for continuously
varying low-level features that may be associated with
each given category. On this view, low-level feature
biases do not play a functional role in computing
category membership and, instead, may reflect more
general structural constraints, such as inheritance of
selectivity from an earlier area in the processing stream.
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The implications of this alternative are that low-level
feature biases measured in category-selective visual
areas may not correlate with the low-level features
and/or positions that are most diagnostic of each area’s
preferred category.

To distinguish between these alternatives, we
provide two complementary sets of analyses. First, we
take advantage of a large, richly annotated natural
scene image database (Common Objects in Context
[COCO]; Lin et al., 2014) to demonstrate consistent
associations between low-level features (orientation,
spatial frequency) and high-level semantic category
labels. Next, we use a recently released, large-scale open
functional MRI (fMRI) dataset collected by Allen et
al. (2021; the “Natural Scenes Dataset” or NSD) to
show that these same associations are reflected in the
patterns of feature and spatial selectivity estimated from
neural population responses measured while human
participants view natural scene images. Importantly,
our use of naturalistic images allows us to demonstrate
a link between neural response properties and natural
scene statistics within an ecologically relevant setting,
in contrast to past work with simpler stimuli. Our
results also provide a proof of concept that low-level
feature and spatial biases can be reliably measured in
the human brain using complex, naturalistic stimuli.
Furthermore, our use of a high-resolution, whole-brain
fMRI dataset provides an opportunity to assess our
hypothesis across the brain rather than in a limited
region of cortex. Based on the convergence among our
analyses, we argue that low-level feature and spatial
biases may play a key role in the processing of semantic
categories within high-level visual areas.

Methods

Human participants and acquisition of fMRI
data

We used a large-scale publicly available dataset,
the NSD, for all analyses. A detailed description of
the data is provided in Allen et al. (2021). Briefly,
the NSD includes measurements of whole-brain
blood-oxygen-level-dependent (BOLD) fMRI from
eight participants who each viewed between 9,000 and
10,000 colored natural scenes over the course of 30 to 40
scan sessions. All functional scans were conducted at 7T
using whole-brain gradient-echo echo-planar imaging
(EPI) at a 1.8-mm resolution and a 1.6-s repetition
time. Images were taken from the Microsoft COCO
database (Lin et al., 2014) and were square-cropped
and presented in color, at a size of 8.4° × 8.4° (° =
degrees of visual angle). Of the approximately 10,000
images viewed by each participant, ∼9,000 images

were seen only by that participant, and ∼1,000 were
overlapping across participants. Each image was viewed
for a duration of 3 s, with 1 s between trials. Over
the course of the experiment, each image was viewed
approximately three times, for a total of roughly 30,000
trials per participant. Participants were required to
fixate centrally on a small fixation dot superimposed
on each image while performing a task in which they
reported whether or not each image had been presented
before in any session.

Preprocessing of fMRI data

fMRI data were preprocessed by performing
one temporal interpolation to correct for slice time
differences and one spatial interpolation to correct for
head motion within and across scan sessions (Allen
et al., 2021), resulting in volumetric fMRI time-series
data at a 1.8-mm resolution in participant native space.
Beta weights for each voxel and each trial were then
estimated using a general linear model. To improve
the signal-to-noise ratio in estimating beta weights,
a three-stage procedure was used that consisted of
selecting a hemodynamic response function (HRF)
from a library of candidate HRFs, denoising the data
using a set of noise regressors estimated from voxels
not related to the experimental paradigm, and using
fractional ridge regression to regularize the beta weight
estimation on a single voxel basis (Prince et al., 2022).
Finally, beta weights for each voxel were averaged over
trials on which the same image was shown (typically
three trials per image), and the averaged beta weights
for each image were used for all further analyses.

Defining regions of interest

Each NSD participant also performed several runs
of a category functional localizer task (Stigliani et al.,
2015) and a population receptive field (pRF) mapping
task (Benson et al., 2018). The pRF mapping task was
used to define early retinotopic visual regions of interest
(ROIs) V1, V2, V3, and hV4 (Allen et al., 2021). The
category localizer task was used to define face-selective
ROIs (occipital face area [OFA] and fusiform face
area [FFA]; for our analyses, we combined FFA-1
and FFA-2 into a single FFA region), scene-selective
regions (parahippocampal place area [PPA], occipital
place area [OPA], and retrosplenial cortex [RSC]), and
a body-selective region (extrastriate body area [EBA]).
In addition to these functional ROIs, we also utilized a
probabilistic atlas (Wang et al., 2015) to define areas
V3ab and the intraparietal sulcus (IPS; all six subregions
of IPS0–5 were combined into a single region). Since
the probabilistic atlas also included definitions for early
visual areas V1, V2, V3, and hV4, which were already
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defined using the pRFmapping task, we combined both
sets of definitions for these regions, and where they
disagreed, we deferred to the pRF-based definitions.
For example, if a voxel was labeled V1 in the atlas and
was not included in the pRF-based labels, it was added
to V1, but if it was labeled V1 in the atlas and V2 in the
pRF-based labels, it was kept as V2. As a result, the
retinotopic ROI labels were nonoverlapping with one
another. To prevent the category-selective ROIs from
overlapping with the retinotopic ROIs, we removed
any voxels that overlapped from the retinotopic ROIs
and included them only in the category-selective ROI
to which they corresponded; the area most affected
by this was V3ab, which was originally overlapping
with OPA. To prevent category-selective ROIs from
overlapping with one another (which can happen
for regions defined based on different contrasts), we
removed the overlap by prioritizing face-selective
definitions over body- and scene-selective definitions
and prioritizing scene-selective definitions over
body-selective definitions. Thus, the final set of 12 ROIs
was entirely nonoverlapping. Finally, we applied an
additional threshold to the voxels in each ROI based
on their noise ceiling (i.e., the theoretical proportion of
variance in the data that can be predicted; for details on
noise ceiling calculation, see Allen et al., 2021), using a
threshold of 0.01.

Encoding model fitting

Overview
We fit an encoding model for each individual fMRI

voxel that captured its spatial selectivity as well as
its feature selectivity (Figure 1B; see also St-Yves &
Naselaris, 2018). Fitting was done for two different
visual feature spaces and a semantic category feature
space (see Methods: Feature spaces). The basic
procedure was to first loop over a grid of candidate
pRFs (see Methods: Population receptive fields) for
each voxel and use regularized regression to fit the
weights of a linear model that describes the voxel
response as a weighted sum of the feature activations
corresponding to that pRF. The best-fitting candidate
pRF and the feature weights for that pRF made up the
final encoding model. We then evaluated that model’s
ability to predict voxel responses on a held-out partition
of data. The fitted encoding models were also used to
estimate voxel feature selectivity. Below, we outline each
of these steps in detail.

Population receptive fields
Following from past work (Dumoulin & Wandell,

2008; Kay et al., 2013; St-Yves & Naselaris, 2018;
Vo et al., 2017), we modeled the spatial selectivity of

each fMRI voxel using a two-dimensional Gaussian
response profile over the spatial extent of the viewed
image. This approach is similar to classic approaches
of fitting spatial receptive fields for single neurons in
visual cortex and is often termed a population receptive
field (pRF) to denote summation over the population
of neurons in a voxel. The pRF can be described by
three parameters, x0, y0, and σ , where [x0,y0] and σ ,
respectively, indicate the center and standard deviation
of the two-dimensional Gaussian response profile:

gx0,y0,σ (x, y) = exp

(
−

(
(x − x0)2

2σ 2 + (y − y0)2

2σ 2

))
(1)

To select each voxel’s optimal pRF, we constructed
a grid over candidate pRF parameters. Our grid had
even spacing between adjacent pRF centers in terms of
their polar angle position (θ ) and nonlinear spacing in
eccentricity (r), where candidate centers were spaced
closer to the center of the visual field. The purpose of
the nonlinear eccentricity spacing was to account for
the cortical magnification factor in human visual cortex,
where the neuronal sampling of visual space is more
dense close to the fovea (Duncan & Boynton, 2003).
More concretely, our 16 candidate polar angle positions
were linearly spaced, ranging from 0° to 337.5° in
steps of 22.5°, and our 10 candidate eccentricities were
logarithmically spaced, ranging from 0° to 7°. Our 10 σ
values were also spaced logarithmically, with σ ranging
from 0.17° to 8.4°. To generate the complete grid, we
first computed every possible combination of r, θ , and
σ , which resulted in 1,600 pRFs. We then converted
the centers from polar angle coordinates [r,θ ] into
Euclidean coordinates [x0,y0]. Finally, we eliminated
any pRFs that landed completely outside the image
region (an 8.4° × 8.4° square), by the criterion that their
rough spatial extent (center ± σ ) was nonoverlapping
with the image region. The result of this was that for
the most peripheral pRFs, only the larger size values
were included in the grid. The final grid included 1,456
pRFs in total.

Encoding model design
Our encoding model framework assumed that

each voxel response could be modeled as a linear
weighted sum of the activations in a set of underlying
feature channels. In mathematical notation, this can be
formulated as

y = Xβ (2)

where y is a column vector of length n containing the
voxel responses across n images, and β is a column
vector of length w containing w weights, corresponding
to each of (w − 1) feature channels plus an intercept. X
is the design matrix for the feature space, describing the
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activation in each feature channel for each image plus a
column of ones, size [n × w].

The features in each of our feature spaces were
computed in a spatially specific manner (St-Yves &
Naselaris, 2018), such that the design matrix depended
on the pRF parameters x0, y0, and σ . Referring back
to the pRF definition given in Equation 1, the design
matrix can be expressed as

X = f
(
gx0,y0,σ

)
(3)

where f is a function that depends on the feature space
under consideration. In most cases, f simply refers to
taking the dot product of the pRF with a spatial feature
map describing the activation of some feature channel
at each position in the image. In those cases, for the
spatial activation map at,c (size p × p) corresponding to
image t and feature channel c, and pRF profile g having

the same resolution as a, the corresponding element of
X can be computed by

Xt,c =
p∑

x=1

p∑
y=1

at,c (x, y) · gx0,y0,σ (x, y) (4)

But this form differs when we use a semantic category
feature space (see Methods: Semantic features for
details).

Note that Equation 4 requires generating each
pRF with a flexible resolution to fit the resolution
of the feature map output from a given model. To
achieve this, we scaled the x0, y0, and σ parameters
along with the feature map resolution, so that they
always corresponded to the same positions in image
coordinates.

Figure 1. Overview of our two analysis procedures. (A) In the first set of analyses, we analyzed the associations between Gabor
features and high-level semantic labels across a set of 50,000 COCO images (note that no fMRI data are involved in this step). The left
box depicts a schematic of the feature extraction procedure: For each natural scene image, we used a Gabor feature bank to compute
a stack of feature maps and then applied various spatial weighting matrices (i.e., candidate pRFs; Dumoulin & Wandell, 2008) to
compute the estimated activation in each feature map for a range of spatial positions and pooling field sizes (see Methods for details).
The right box depicts examples of the semantic category labels included in the COCO dataset (Lin et al., 2014); each label is
accompanied by a spatial mask indicating the corresponding object’s position in the image. We used these labels to infer high-level
semantic category content for each image, labeling either the entire image (indoor, outdoor) or each pRF individually (face, building,
animate, inanimate, small, large); see Methods for details. (B) In the second set of analyses, we used the NSD (Allen et al., 2021) to
learn an encoding model predicting each fMRI voxel’s response as a weighted sum of image features in the voxel’s pRF. The feature
extraction procedure was identical to (A) but performed on a different set of images (the images viewed by each fMRI participant). To
fit the model for each voxel, we first learned a set of weights for each candidate pRF (using ridge regression), then chose the pRF that
resulted in the lowest loss on held-out data. Note that while this figure illustrates use of a Gabor feature bank, we used the same
approach for other feature spaces; see text for details.
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Also note that when f takes the form described
in Equation 4, the σ parameter of the pRF does not
provide a complete description of the spatial extent
of the image that contributes to computing X. This is
because each pixel in the activation map a has its own
pooling region, determined by the operations used
to compute that activation (e.g., the kernel size of a
convolution). Thus, σ should be interpreted as a lower
bound on the pRF size rather than an exact estimate of
its size (St-Yves & Naselaris, 2018).

Model-fitting procedure
Following previous work (Güçlü & van Gerven,

2014; Huth et al., 2016; Wehbe et al., 2014), we solved
for the weights for each voxel using ridge regression
(L2-regularization). The ridge regression estimator of β
is given by

�

β = (XTX + λI )−1XTy (5)

where I is a [w × w] identity matrix, λ is a regularization
parameter, and y is a vector containing the voxel
response for n images. Once β̂ is computed, the voxel
response can be predicted from the design matrix
associated with any arbitrary stimulus input by

ŷ = X β̂ (6)

The regularization parameter (λ) was selected using
cross-validation on a per-voxel basis, from a set of 10
candidate λ values logarithmically spaced between 0
and 105. The full cross-validation procedure is detailed
below (see also Figure 1B).

First, we held out ∼1,000 images from the ∼10,000
total images for each participant, to serve as a validation
set. The validation set images always consisted of the
set of “shared images” that were seen by all participants
(see Methods: Human participants and acquisition of
fMRI data). The remaining ∼9,000 images made up the
training data. Before fitting, we z-scored the values in
each column of the design matrix, separately for the
training images and validation images. To select the
ridge parameter and the best pRF parameters for each
voxel, we held out a random 10% of the training data
as a nested validation set. We then used the remaining
90% of training images to compute β̂ for each of our
candidate λ values and candidate pRF models (recall
that the pRF parameters determine the design matrix
X used; see Equation 3). For each of the candidate
pRFs and λ values, we computed a prediction of the
nested validation data ŷ based on the estimate of β̂, and
computed the loss of that estimate,

∑
(y − ŷ)2. The

pRF parameters and λ value that resulted in the lowest
loss were selected as the best pRF parameters and λ for
that voxel. Correspondingly, the β̂ associated with that
pRF and λ were selected as the best weights for that
voxel. Finally, these best-fit parameters were used to

predict each voxel’s response on the held-out validation
data, and we computed the coefficient of determination
(R2) between y and ŷ as a measure of overall model
accuracy.

The above procedure describes our method for fitting
spatial and feature selectivity simultaneously, as done
in St-Yves and Naselaris (2018). However, once a stable
estimate of the pRF for each voxel has been obtained
using some feature space, we can adapt this method
to fit just the feature selectivity for each voxel (for
any arbitrary feature space), assuming that its spatial
selectivity remains fixed. To do this, we use each voxel’s
precomputed pRF estimate to select the correct design
matrix X and fit its β̂ for that design matrix only, for
each candidate λ value. We follow the same procedure
as outlined above with respect to training/validation
image splits and λ selection.

For all analyses presented here, our approach was to
first fit both the feature and spatial selectivity of each
voxel using the AlexNet concatenated feature space (see
Methods: AlexNet features). Once the pRF estimates
were obtained based on AlexNet, we assumed that
these pRFs remained fixed for all other feature spaces
and used them to fit each voxel’s weights for all other
feature spaces of interest (i.e., Gabor and COCO-all;
see Methods: Feature spaces). We chose the AlexNet
feature space (Krizhevsky, 2014) for the first pRF fitting
step because AlexNet has often been used to model
voxel responses in human and nonhuman primate
visual cortex and gives good predictive performance
across a range of cortical areas (Cadieu et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et
al., 2020, Li & Bonner, 2022). In our data, AlexNet
generally yielded higher predictive accuracy than the
Gabor model in higher-level visual areas. Similar results
for both spatial and feature selectivity were obtained
when we fit the entire model, including pRFs, from
scratch on the Gabor feature space (Supplementary
Figure S8).

To determine whether encoding model accuracy was
significantly better than chance, we used a permutation
test. This consisted of shuffling the image label sequence
randomly 1,000 times, refitting the model weights, and
computing R2. Shuffling was done separately within
the training images, validation images, and nested
validation images. When performing the permutation
test, we used the “real” estimate of each voxel’s pRF
as a starting point and only refit the feature weights
on these data, rather than fitting the pRF on the
shuffled data. Once the shuffled R2 values for each
voxel were obtained, we computed one-tailed p-values
by computing the proportion of iterations where the
shuffled R2 was greater than or equal to the real R2. We
then performed false discovery rate (FDR) correction
on the p-values across voxels for each participant, using
a threshold of α = 0.01 (Benjamini & Hochberg, 1995).
An identical procedure was used to test significance of
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fits on the original data and to test significance of fits
on the residuals of the semantic model (see Methods:
Semantic category encoding model).

Feature spaces

Overview
For each stimulus image viewed by fMRI

participants, we extracted several different sets of
features that were intended to capture different
aspects of the image’s visual and semantic content.
These features were used to construct voxelwise
encoding models, as well as to estimate the statistical
associations between lower-level features and semantic
categories (see Methods: Measuring feature-semantic
associations). Each set of features was extracted in
a spatially specific manner, such that the features
associated with each pRF grid position described the
visual or semantic content within a specified region of
the image only. Unless otherwise specified, all feature
extraction was performed on grayscale images at a
resolution of 240 × 240 pixels. Below, each feature
space is described in detail.

Gabor features
Our first set of features was based on Gabor filters

that extract the energy at specified orientations and
spatial frequencies (see Figure 1A). Similar models
have previously been used to model the responses
of early visual cortex to natural images (Kay et al.,
2008; Lescroart & Gallant, 2019; St-Yves & Naselaris,
2018). Our Gabor filter bank included filters at 12
unique orientations, linearly spaced between 0° and
165° in increments of 15°. Each filter consists of
a two-dimensional complex-valued sinusoid with
a specified frequency and orientation, multiplied
by a two-dimensional Gaussian envelope (standard
deviation of the Gaussian was 2.9 pixels for a filter 12 ×
12 pixels in size). The real and imaginary components
of the sinusoid are at 0° and 90° phase, respectively, to
form a quadrature pair. The final activation of each
filter was obtained by convolving both the real and
imaginary filters with the input image (using circular
padding for the stimulus edges), squaring the output
of both the real and imaginary parts, summing the real
and imaginary parts, and taking the square root. We
then applied a nonlinearity to the resulting activation
values, f (x) = loge(1 + √

x).
We applied this bank of filters at eight spatial

frequencies that were logarithmically spaced between
0.35 and 8.56 cycles per degree of visual angle (cyc/°).
To achieve filtering at each frequency, we first resized
the input images to an appropriate size (i.e., smaller for
lower frequencies) using bilinear resampling. We then

applied the stack of filters, which were always a fixed
size and frequency in pixels (12 × 12 pixels and 4.13
pix/cycle), to the resized images. The end result was a
set of eight stacks of feature maps, one for each spatial
frequency, where the height and width dimensions
of each stack depended on its corresponding spatial
frequency. Each stack contained 12 feature maps for the
12 orientation channels.

Finally, to extract the feature activations within each
pRF in our grid, we took the dot product of the pRF
with each feature map to obtain a single value for the
activation in each feature channel (Equation (4)). This
resulted in a 96-dimensional feature space, computed
separately at each pRF grid position.

AlexNet features
We extracted visual features from a convolutional

neural network model referred to as “AlexNet,”
which is trained on a 1,000-way image classification
task (for more details on the model’s construction
and training, see Krizhevsky, 2014). We extracted
activations from the first five convolutional layers of a
pretrained AlexNet model. Activations were extracted
after the rectifying nonlinearity (ReLU) function that
follows each convolutional operation. To extract the
features for each pRF grid position, we took the dot
product of each feature map with the pRF of interest
(Equation 4), which resulted in a single value for each
feature channel. The dimensions of the resulting feature
sets corresponding to each AlexNet layer are [64, 192,
384, 256, 256].

Before using these features in our encoding models,
we reduced the dimensionality of features from each
AlexNet layer using principal components analysis
(PCA). PCA was always performed using the training
data only to solve for the principal components and
then using those components to transform all data into
the same subspace. We retained a sufficient number of
components to explain at least 95% of the variance in
the training data. We performed PCA on the features
from one pRF at a time. As a result, the dimensionality
of features from different pRFs was allowed to differ
following PCA, even though the dimensionality of the
features from each pRF was the same before PCA.
After performing PCA on the features from each layer,
we concatenated the features across all layers.

Semantic features
In addition to modeling the visual features present in

our image set, we created a feature set that explicitly
modeled the semantic categories present at each spatial
position (i.e., each pRF) in each image. To achieve
this, we took advantage of the object segmentations
associated with each image in the Microsoft COCO
database (Lin et al., 2014), as well as an additional
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set of semantic segmentations that label the “stuff”
(meaningful but amorphous regions such as sky,
walls, etc.) in each image (COCO-stuff; Caesar et al.,
2018). Each object or stuff instance in each of these
labeling schemes is accompanied by a polygon that
defines the spatial extent of the instance. To determine
whether each instance was overlapping with a given
pRF in a given image, we first generated a binary
mask for the label polygon, at a resolution of 425 ×
425 pixels. We then created a second binary mask
of the same size, which captured a circular region ±
2σ from the pRF center (see Equation 1). The pRF
was considered to be overlapping with the label if
the two masks overlapped by at least 10 pixels. This
very lenient overlap threshold was meant to account
for the possibility of noise in our pRF parameter
estimates, as well as the fact that receptive fields
in category-selective regions of visual cortex tend
to be large. In initial tests, using a more stringent
overlap threshold led to poorer fits of the semantic
model.

Using this method, we extracted several sets of
semantic features for each image and each pRF.
The first set of semantic features, which we termed
“COCO-all,” included 80 basic-level object categories,
12 superordinate object categories, 92 basic-level stuff
categories, and 16 superordinate stuff categories, for a
total of 200 features (Supplementary Table S1). Each
feature is a binary label that denotes whether a category
is present within the pRF of interest. When building
encoding models from this feature set (COCO-all
model), we directly used the binary features for each
pRF as our design matrix (see Equation 2). These
encoding models were used in order to regress out
the contributions of semantic selectivity from voxel
responses (see Methods: Semantic category encoding
model).

Next, we created eight additional semantic category
labels that captured coarse-level semantic information
about the image contents: faces, buildings, animate
objects, inanimate objects, small objects (in terms
of real-world size), large objects, indoor scenes, and
outdoor scenes. Most of these higher-level semantic
labels were defined on the basis of the “things” and
“stuff” category labels. For example, if a pRF contained
any animate object (i.e., a person or any animal), it
was labeled as having the “animate” label, and if it
contained any inanimate object, it was labeled with
the “inanimate” label. This allows for the possibility
that pRFs could be labeled with neither the animate
nor the inanimate label, or they could be labeled with
both. Similarly, the small and large object labels were
assigned to pRFs based on whether they contained
items we defined as being “small” (e.g., a banana) or
“large” (e.g., an elephant). See Supplementary Table S2
for a list of the object categories we defined as small and
large. For the “building” category label, we assigned the

label of building to any pRF that had a label from the
COCO-stuff superordinate category named “building.”

To label the “face” category, we used the RetinaFace
network (Deng et al., 2020) to detect faces in each
image. We used a pretrained version of the model
implemented in Tensorflow 2.0, using a ResNet-50
backbone, and ran it on images at a resolution of
240 × 240 pixels. The model labels each instance of a
face in each image with a rectangular bounding box.
We then used the same approach described above to
determine whether each face bounding box overlapped
with each pRF (again using a threshold of 10 pixels for
the overlap). To verify the general accuracy of these
labels, we visually checked the bounding boxes and
also compared the labels against the presence of the
“person” label in COCO. This comparison revealed
good agreement between the COCO labels and the
RetinaFace labels: approximately 30% of images were
labeled as both person and face, another 20% were
labeled as person but not face (these are the images that
contain a human body part but not a face), and less
than 1% were labeled with “face” only (these indicate
false positives of the RetinaFace model, sometimes
indicating dog or cat faces).

For the indoor–outdoor distinction, since the indoor
or outdoor category is most naturally understood as a
property of entire scenes, rather than something that
can vary across the spatial extent of a single image,
we created labels for the entire image rather than for
each pRF separately. To define whether an image was
indoor or outdoor, we looked for the presence of
particular diagnostic objects or stuff classes (i.e., “car”
and “grass” are diagnostic of outdoor images, “bed”
and “carpet” are diagnostic of indoor images). See
Supplementary Table S3 for a list of the categories we
used to make these distinctions. When images included
both indoor and outdoor classes, we resolved the tie by
counting the number of total indoor categories (objects
and stuff) and outdoor categories included in the image
and taking the maximum. This left only around 7% of
images that could not be unambiguously labeled by our
method.

Measuring feature-semantic associations

To investigate the association between each Gabor
feature channel and each of our eight semantic
categories (see Methods: Semantic features), we
used two approaches. First, we computed a partial
correlation coefficient between each of the 96 Gabor
features and each category label of interest (represented
as a binary value for the presence of the category),
controlling for the contributions of the other seven
category labels. Partial correlations were computed
using the linear regression method, which consisted of
learning a multiple linear regression that maps from the
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“other” category labels to the category label of current
interest, and another regression that maps from the
“other” category labels to the Gabor feature of interest.
The partial correlation was then obtained by computing
the correlation coefficient of the residuals of these two
regression fits. This was done for each feature within
each pRF individually.

Second, we used a linear decoder to measure how
much object category information can be extracted
from the combined pattern of activation across all
96 Gabor features. We performed decoding for one
category at a time, using labels for whether that
category was present or absent from each image.
Decoding was performed using a linear discriminant
analysis classifier, implemented in scikit-learn, and
a 10-fold cross-validation procedure. To measure
decoding performance, we computed d′ from signal
detection theory, based on the formula d′ = Z(hit
rate) – Z(false-positive rate). The hit rate is defined
as the proportion of test samples in Condition X
accurately classified as belonging to Condition X,
and the false-positive rate is the proportion of test
samples in Condition Y inaccurately classified as
belonging to Condition X, and Z is the inverse
of the cumulative distribution of the Gaussian
distribution.

To ensure that comparisons of decoding performance
across pRFs were fair, we always used the same number
of images to train and test the classifier in each pRF
(since semantic labels were created for each pRF
individually, the number of images that were labeled
with each category varied across pRFs). To achieve this,
we first identified the minimum number of images (n) in
any category for any pRF. When performing decoding
within each pRF and each category, we created a
randomly downsampled set of images that consisted
of n images each with and without that label. This also
ensured that the classifier was trained on a perfectly
balanced dataset. Before performing this subsampling,
we first removed the most peripheral pRFs (those with
eccentricity > 4°), as well as the smallest pRFs (those
with size < 1°) from the grid, using only the remaining
640 pRFs. The purpose of this was to ensure that
there were sufficient images available to support robust
decoding, since category labels were more rare in the
smallest and most peripheral pRFs (see Supplementary
Figure S1).

To test whether decoding performance varied
significantly based on pRF parameters, we estimated
the slope of a linear regression fit where the y-coordinate
is d′ and the x-coordinate is each pRF parameter
of interest (pRF σ , eccentricity, horizontal position,
and vertical position). When performing this test for
eccentricity, horizontal position, and vertical position,
we used only the pRFs corresponding to the smallest
size used for decoding (after excluding the smallest sizes
as described above, this was 1.48°) because this provides

the maximum resolution to detect differences across
the visual field. To determine whether the relationship
with each parameter was significantly different from
zero, we used a permutation test where we randomly
shuffled the x-coordinate data 10,000 times and refit
the line. We then computed a two-tailed p-value by
computing the number of iterations on which the real
slope exceeded the shuffled slope and the number of
iterations on which the shuffled slope exceeded the
real slope, taking the minimum and multiplying by 2.
The resulting p-values were FDR corrected (Benjamini
& Hochberg, 1995) across all pRF parameters and
semantic categories (24 total values) at α = 0.01.

Importantly, both of these analyses were performed
on a completely independent, randomly selected set
of 50,000 COCO images that were not seen by any
participant in the NSD. This was done to ensure that
the comparison between our image statistics analyses
and our voxel selectivity analyses was noncircular and
not driven by the possibility of overlap in the images.
We preprocessed these independent COCO images in
a similar manner to the preprocessing used for the
NSD images, but instead of computing the “semantic
loss” described in Allen et al. (2021) to determine
cropping boxes, we simply cropped the long edge of each
rectangular image in a symmetric way to generate square
images.

Estimating voxel semantic selectivity

We estimated the selectivity of voxel activations
for each of our eight high-level semantic categories
(Methods: Semantic features) by using a partial
correlation coefficient that controls for the contributions
of the other seven semantic categories, analogous to
the method described in the previous section (Methods:
Measuring feature-semantic associations). We used
these partial correlation coefficient values to define the
top 500 category-selective voxels for each category in
each participant. To choose the top voxels, we first
thresholded voxels based on significant accuracy of the
Gabor encoding model (see Methods: Model-fitting
procedure) and also removed any voxels in early
retinotopic areas V1, V2, V3, and hV4. This ensured
that the final set of voxels we selected were within
higher visual cortex and were well fit by the Gabor
model.

Estimating voxel visual feature selectivity

After fitting Gabor encoding models to each voxel,
we used the fitted models to estimate voxel selectivity
for individual Gabor feature channels. These analyses
were only performed on well-fit voxels, defined as
those whose validation set accuracy was above chance
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using a permutation test (see Methods: Model-fitting
procedure; see Supplementary Table S4 for the number
of voxels passing this threshold). To estimate feature
selectivity, we first computed the sensitivity of the
voxel response (as predicted by the encoding model) to
changes in the activation within each feature channel.
In mathematical notation, for a given feature channel
c and a voxel v with a fitted encoding model for the
feature space of interest, our measure of feature
sensitivity ρv,c is

ρv,c = Corr (ŷv, xc) (7)

where ŷv denotes the model-predicted response of
the voxel to the validation set images, and xc denotes
the activation in channel c for the same validation set
images.

This sensitivity measure is meant to capture
approximately how strongly each feature channel is
“weighted” in the overall encoding model prediction for
each voxel. Importantly, however, it is not the same as
simply using the raw β̂ weights as a measure of feature
sensitivity. The raw weights of our encoding models are
not likely to provide a stable estimate of voxel feature
tuning due in part to the high degree of collinearity
between feature channels and in part to the fact that we
fit the models with ridge regression, which can lead to
biased weight estimates (Farrar & Glauber, 1967; Hoerl
& Kennard, 1970). In contrast, because ρv,c is measured
using actual validation set data, it provides a measure
of the functional alignment between the feature channel
and the response of the encoding model, within the
context of the real covariance structure of the data.
At the same time, we note that ρv,c is not intended to
dissociate the contributions to the encoding model
prediction made by feature channels that are highly
correlated.

Once the feature sensitivity (ρ) values are computed
for each Gabor feature (12 orientations × 8 spatial
frequencies) and each voxel, it is straightforward to
create a sensitivity profile that captures each voxel’s
sensitivity to changes in feature intensity at different
positions along the orientation or spatial frequency
axis. Orientation sensitivity profiles are obtained by
plotting the sensitivity values as a function of feature
orientation, and spatial frequency sensitivity profiles
are obtained by plotting the sensitivity values as a
function of feature spatial frequency. Averaging these
profiles across values of the other dimension (e.g.,
averaging orientation sensitivity profiles across all
spatial frequency levels) yields an average feature
sensitivity profile. These average feature sensitivity
profiles were used to compute each voxel’s “preferred”
orientation and spatial frequency (i.e., values plotted
in Supplementary Figure S2) through an argmax
operation.

Counting peaks in feature sensitivity profiles

For each voxel’s average orientation and spatial
frequency sensitivity profiles (see previous section),
we identified the approximate number of peaks in
the curve as a supplementary analysis to ensure that
our results did not depend on assuming a single peak
(Supplementary Figure S4). To identify peaks, we
first identified all the local maxima in the curve by
comparing each sensitivity value against the values
to its left and right. For orientation, we accounted
for the circularity of the feature space by wrapping
the curve circularly when computing local maxima,
while for spatial frequency, we treated the endpoints
as local maxima if they exceeded the points to their
left or right. Next, we removed any peaks that had
a negative sensitivity value, since those peaks do
not indicate a positive feature preference. Then, we
computed the height of each peak by subtracting
the minimum value across the sensitivity profile and
divided the height of each peak by the height of the
largest peak. Based on the resulting ratio values, we
retained only those peaks whose value exceeded 0.50.
This ensured that when multiple peaks were counted for
a given voxel, each of these peaks was comparable in
height.

Based on the finding that many voxels had two
peaks in their orientation sensitivity profiles, we
analyzed the orientation preferences of these voxels by
sorting them into groups. For each of the two-peaked
(bimodal) voxels, we identified the two orientations
at which the two peaks occurred, without regard to
the relative height of the two peaks. We then grouped
together voxels that were selective for the same pair
of orientations. To create the plots in Supplementary
Figure S4D, we selected the three most common pairs
of orientations across all voxels and combined all other
pairs of orientations into a separate group. We did
not perform this procedure for spatial frequency, since
most voxels had only one true peak in their frequency
sensitivity profiles.

pRF coverage analysis

To quantify the visual field biases in each ROI,
we computed an aggregated estimate of visual field
coverage across all pRFs (similar to Silson et al.,
2015). Specifically, we combined all pRF estimates
across all voxels in a given brain region (after first
thresholding the voxels based on performance of the
AlexNet encoding model at an R2 value of 0.01). We
combined voxels using an averaging operation across
all pRFs, as this takes into account differences in the
density of pRF coverage across the visual field, but
similar results were obtained when aggregating using a
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maximum operation. This led to one aggregated pRF
coverage map for each participant and each ROI. We
then took the average of these maps in each visual field
quadrant to yield an estimate of the coverage for each
quadrant.

Next, we analyzed the differences in coverage
among ROIs and quadrants by performing a three-way
repeated-measures analysis of variance (ANOVA),
with ROI, vertical position, and horizontal position
as factors (implemented using the Python package
statsmodels). Because this test revealed a significant
interaction between ROI and vertical position, we
performed post hoc pairwise tests to identify ROIs
where there was a difference in coverage between the
upper and lower visual fields. Pairwise tests were done
using a nonparametric, two-tailed paired t-test. To
achieve this, we first computed a t-statistic for the actual
coverage values in each ROI and each half of the visual
field (upper vs. lower), then randomly shuffled the
vertical position labels for the coverage values across
10,000 iterations and computed a t-statistic for each
shuffling iteration. Then, we computed a two-tailed
p-value by calculating the number of iterations on which
the real t-statistic exceeded the shuffled statistic and the
number of iterations on which the shuffled t-statistic
exceeded the real t-statistic, took the minimum of these
values, and then multiplied by 2. Finally, we performed
FDR correction on the p-values across all ROIs with an
α value of 0.01 (Benjamini & Hochberg, 1995).

Semantic category encoding model

To determine whether visual feature selectivity was
driven in part by category selectivity, we constructed
an encoding model (COCO-all model) that predicts
each voxel’s response based on the COCO categories
present at each location in the image (see Methods:
Semantic features). As described previously (Methods:
Model-fitting procedure), when fitting this model, we
utilized the pRFs for each voxel that were already
estimated based on the AlexNet encoding model, so
fitting the category model for each voxel required fitting
only a single set of weights across the 200 semantic
category features. Once the model was fit, we used it
to generate predicted voxel responses for all images
in the dataset (both training and validation) and then
subtracted the actual voxel activations from these
predicted responses to yield a residual for each voxel’s
response to each image. These residuals represent the
portion of voxel responses that cannot be modeled as a
linear combination of category features. We then refit
our Gabor encoding model with the residuals in place
of raw voxel activation data, using the same approach
described earlier (outlined in Methods: Encoding
model fitting). We also used an analogous approach
to fit the COCO-all model to the residuals of the

Gabor encoding model. Importantly, the exact same
data splits were used when fitting both the COCO-all
model and the Gabor model, such that the validation
set data did not contribute to training of either
model.

When analyzing feature selectivity results from the
Gabor encoding model fit to the COCO-all residuals
and comparing them to the results of the Gabor
model fit to the raw data, we always thresholded voxels
according to their R2 for both the raw data fit and the
residuals fit, based on the results of a permutation test
for significance (see Methods: Model-fitting procedure).
This ensured that the same set of voxels was being
compared between the raw and residual fit models (see
Supplementary Table S4 for the number of voxels in
each ROI meeting this threshold).

Fitting models for single categories

As an additional test of whether feature selectivity
was influenced by differential processing of categories,
we performed Gabor model fitting using images
from only one high-level category at a time. For this
analysis, we focused on only one semantic dimension
at a time: For instance, when separating images
into indoor and outdoor (i.e., the indoor–outdoor
dimension), we ignored the face, building, animacy, and
real-world size labels. This was because balancing across
multiple dimensions resulted in too few images to
robustly fit the model. We also excluded the “face” and
“building” categories from this analysis because these
categories were relatively rare, especially for small pRFs
(Supplementary Figure S1). When splitting the images
based on each dimension, we always split images based
on labels on a per-pRF basis, meaning that the images
assigned to a given category were different depending
on which pRF was currently of interest. For example,
when fitting the set of voxels whose best pRF was pRF
n, we used the category labels for pRF n to split the
images into category groupings and performed fitting
for these voxels using the data in each split separately.
For a set of voxels with a different pRF estimate, the set
of images that went into each split could be different.
The exception to this was the indoor versus outdoor
distinction, where entire images had the same label, and
thus the same data split was used for all pRFs (and thus
all voxels).

Given that the amount of data used to fit the
encoding model can influence its overall predictive
power, we always used the same number of images in
the splits corresponding to a given semantic dimension
and pRF. For example, if there were 5,000 animate
labels for a given pRF and only 4,000 inanimate
labels, we randomly selected 4,000 images from the
set with the animate label. To provide an additional
comparison, we also generated a subsampled set of
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images for each semantic dimension that was balanced
with respect to category (i.e., 50% each label) and
had the same total number of images as the smaller
category (in this example, it would include 2,000
animate-labeled images and 2,000 inanimate-labeled
images). Thus, for a given voxel and a given semantic
dimension, the single-category and balanced category
models were always fit with the same number of
images, facilitating a balanced comparison between the
three sets of results (i.e., indoor only, outdoor only,
balanced indoor–outdoor). However, the number of
images was not necessarily matched for voxels with
different pRFs or for splits over different semantic
dimensions.

Fitting models with simulated data

To determine whether the nonuniform image
statistics of our dataset led to any overall bias in the
model’s feature sensitivity estimates, we ran a test using
simulated voxel data. The rationale for this analysis
is that if we simulate the responses of voxels having
known orientation and frequency tuning, and we
can accurately recover the tuning properties of these
simulated voxels, then this suggests our modeling
procedure is not biased by the image statistics of the
dataset—and that the feature sensitivity values we
have measured on the real dataset are due to actual
differences in response properties. To construct the
simulated data, we started with a grid of 160 pRFs
(combinations of eight angular positions evenly spaced
between 0° and 315°, four eccentricities log-spaced
between 0.24 and 3.93 degrees of visual angle [dva],
and five sizes log-spaced between 0.17 and 5.46 dva).
For each pRF, we simulated 96 possible “ground-truth”
preferred feature values, representing every possible
combination of the 8 spatial frequencies and 12
orientations in our original Gabor model. The final
simulated population of voxels consisted of every
possible combination of preferred feature value and
pRF, for a total of 15,360 simulated voxels. Each
simulated voxel’s response was generated by taking the
matrix of features extracted from the images shown to
S1 within the voxel’s pRF and generating a response
that was perfectly correlated with the feature channel
corresponding to the voxel’s preferred feature value. We
then added random Gaussian noise to each response,
drawing from a distribution with μ = 0 and σ = 0.10.
We also tested other values of σ for the noise and
obtained similar results. Using the simulated dataset, we
then performed our model-fitting procedure. Because
we were primarily interested in how accurately we
could estimate feature selectivity, we used each voxel’s
ground-truth pRF as a precomputed pRF estimate
for the voxel (as described in Methods: Model-fitting
procedure) and used the fitting procedure to estimate its

feature weights only. We computed the preferred feature
values based on these fits as described in the preceding
sections.

Data and code availability

The NSD dataset is openly available at
http://naturalscenesdataset.org/. All code needed
to run our analyses can be accessed at https:
//github.com/mmhenderson/image_stats_gabor.

Results

Our overall experimental goal was to measure the
selectivity of cortical populations for visual features
and spatial positions and determine if the properties
of selectivity in each visual area can be understood in
terms of natural image statistics. We used a two-pronged
approach to critically assess different hypotheses. First,
we analyzed the relationship between low-level visual
(Gabor) features and high-level semantic categories
across a large set of natural scene images (Figure 1A).
Second, we performed a comprehensive analysis of the
orientation, spatial frequency, and spatial selectivity
of neural populations throughout visual cortex. The
measured neural activity in these populations was
taken from the NSD (Allen et al., 2021) in which fMRI
scanning was performed while human observers viewed
COCO images (an independent set from those used in
our first analysis). We constructed voxelwise predictive
encoding models based on image-computable features
and used these models to estimate voxel selectivity for
low-level features as well as spatial position (Figure 1B).
To examine the relationship between feature selectivity
and category selectivity, we compared our results across
a range of category-selective cortical regions and
determined whether the specific biases detected in each
area corresponded with that area’s presumed role in
category processing.

Comparing feature statistics across high-level
semantic categories

Across a set of 50,000 natural scene images sampled
from COCO, we observed several key relationships
between low-level Gabor features and high-level
semantic categories (Figure 2A). Here we focus on
eight commonly studied high-level semantic categories:
faces, buildings, animate objects, inanimate objects,
small objects (in terms of real-world size), large objects,
indoor scenes, and outdoor scenes; see Methods
for details on how high-level category labels were
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Figure 2. High-level semantic categories are each associated with distinct patterns of low-level visual features. (A) The partial
correlation coefficient (ρ) for each Gabor feature channel with each semantic category, with channels organized by spatial frequency
on the y-axis and orientation on the x-axis. Our orientation axis is defined such that 0° = vertical and 90° = horizontal. (B) The mean
(top) and variance (bottom) across all images for each Gabor feature channel. All analyses in this figure were performed using a set of
50,000 COCO images independent from the ones used in the NSD dataset; see Methods for details.

determined. In the orientation domain, we found that
images labeled as outdoor scenes, as well as image
patches containing large, inanimate objects, were
positively associated with horizontal (90°) orientations
(Figure 2A). Consistent with prior results, buildings
were also associated with horizontal (90°) orientations,
as well as being more strongly associated with vertical
(0°) orientations. In contrast, image patches containing
faces, animate objects, and/or objects with a small
real-world size were positively associated with diagonal
orientations (45°/135°). Focusing on the spatial
frequency dimension, we observed that outdoor scenes
were positively associated with high spatial frequencies,
while faces and other animate objects were associated
with lower spatial frequencies, particularly around 30°
and 150° in orientation. In addition to these semantic
associations, the overall mean and variance of feature
channels varied across orientation and spatial frequency
(Figure 2B), with mean and variance tending to be
higher for cardinal orientations (0/90°) as compared
to diagonal orientations, and higher for low spatial
frequency than high spatial frequency; these findings
are likewise consistent with past reports (Girshick et al.,
2011; Henderson & Serences, 2021; van der Schaaf &
van Hateren, 1996).

Statistical associations between Gabor features and
high-level semantic categories indicate that low-level
visual features may serve as informative cues for the
detection of such categories. To further investigate
this association, we used a linear decoding analysis
to examine how the category-diagnostic information

contained across all Gabor feature channels varied as
a function of spatial position in the visual field. Since
both our Gabor features and semantic labels were
computed in a spatially specific manner across a grid
of candidate model pRFs, we performed decoding for
each pRF separately and then examined how decoding
performance (d′; see Methods for details) varied as a
function of pRF size and position (Figure 3). First,
there was an effect of pRF size that differed depending
on the category considered: The status of scenes as
indoor or outdoor, as well as the presence of small,
inanimate objects, was more easily decodable from
large pRFs than small, but the presence of faces and
animate objects was more easily decodable from small
pRFs than large. Second, the effect of eccentricity
also differed across categories, with peripheral pRFs
containing more information about the indoor and
outdoor scene categories but central pRFs containing
more information about faces, animate objects, small
objects, and large objects. Third, comparing the upper
and lower visual fields, we found that pRFs in the lower
visual field were more informative for decoding faces,
buildings, inanimate objects, small objects, and outdoor
scenes than the upper visual field. No differences were
detected between the left and right visual fields.

Note that these category decoding analyses were
performed using a fixed number of images for every
pRF, so any differences in category diagnosticity across
the visual field are necessarily due to differences in the
informativeness of the Gabor features themselves, not
differences in the frequency of each object category
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Figure 3. Category diagnosticity of Gabor features differs depending on spatial position. Each plot shows the cross-validated
performance (d′) of a linear decoder at detecting the specified category based on patterns of activation across all 96 Gabor feature
channels (see Methods). Rows represent different semantic axes; each column represents values binned according to one pRF
parameter. Error bars indicate ± 1 SD across pRFs within each parameter bin, and * indicates a significant linear relationship
evaluated using a permutation test, FDR-corrected α = 0.01. All analyses used 50,000 COCO images independent from those used in
the NSD dataset; see Methods for details.

across the visual field. However, differences in the
frequency of object categories were also observed
across pRFs with different parameters (Supplementary
Figure S1). All six of the object categories considered
in our analysis were more frequent for larger pRFs
and for more central pRFs, while the categories of
animate, inanimate, small, and large objects were all
more frequent in the lower visual field. Interestingly,
faces and buildings were both more frequent in the
upper visual field, which is in contrast to the finding
that these categories were more easily decodable
from Gabor features in the lower visual field. Thus,
the informativeness of Gabor features for category
detection appears to vary with spatial position in
a way that is partly dissociable from overall label
frequency.

Feature selectivity in visual cortex

Given this evidence for associations between image
features and semantic categories, we next evaluated
whether neural populations in human cortex exhibit
biased tuning that reflects these associations. We
focused on voxels within ROIs in visual cortex: early
retinotopic ROIs (V1, V2, V3, and hV4), dorsal
visual ROIs (V3ab, IPS), scene-selective ROIs (OPA,
PPA, RSC), face-selective ROIs (OFA, FFA), and a
body-selective ROI (EBA). All ROIs were defined using
independent functional mapping data; see Methods
for details. The rationale for selecting these regions is
that the category-selective ROIs will allow us to test
preexisting hypotheses regarding the functional roles of
these regions in category processing, while including
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Figure 4. Average cross-validated accuracy (R2) of the encoding models. The Gabor model was used to estimate voxel selectivity for
low-level features, while the AlexNet model was used to fit pRFs; see Methods for details. Each bar represents R2 averaged over
voxels within one ROI; gray points indicate single participants; error bars represent ± 1 SEM across 8 participants. Black brackets
above each bar indicate the noise ceiling (mean ± 1 SEM) for each ROI.

early visual and dorsal ROIs will allow us to explore
the generalizability of our findings beyond the typically
explored category-selective regions of ventral visual
cortex.

To measure selectivity for low-level visual features
and spatial positions, we constructed a forward
encoding model for each voxel that modeled its
response to each image as a linear combination of a
set of image-computable features. Our framework also
incorporated a model of each voxel’s spatial selectivity
or pRF (see Figure 1B and Methods for details). We
used two different visual feature spaces to construct
encoding models. The first feature space was a set of
Gabor features with channels corresponding to different
combinations of orientation and spatial frequency;
this model allowed us to assess voxel selectivity for
easily interpretable low-level visual features. The Gabor
encoding model was able to predict voxel responses
to held-out images with good accuracy (R2) across a
range of visual ROIs, with highest average R2 in V1,
and performance generally declining in more anterior
ROIs (Figure 4). The second feature space was a set
of features from a deep neural network (AlexNet;
Krizhevsky, 2014); this model was used primarily to
fit the pRF parameters for each voxel and was chosen
because it provided higher predictive performance than
the Gabor model, particularly in higher levels of visual
cortex (Figure 4).

Once each voxelwise encoding model was fit, we used
the models to estimate voxel sensitivity for individual
model features. Our measure of feature sensitivity was
computed by generating encoding model predicted
responses to images in the validation image set (i.e.,
a set of images not used during model training) and
then correlating the predicted responses with the
continuous activation values in each feature channel
(see Methods for details). Since the orientation and
spatial frequency of each Gabor feature channel is
known, we then plotted the sensitivity values as a
function of orientation and spatial frequency to yield

feature sensitivity profiles (Figure 5). Plotting the
feature sensitivity profiles, averaged across all voxels in
each ROI, revealed several key differences among ROIs.
First, early visual ROIs, while having positive sensitivity
on average for all Gabor feature channels, had the
highest sensitivity for oblique (45°/135°) orientations.
This effect, which diverges from the common finding
of a cardinal orientation bias in early visual cortex,
may be related to the broad spatial frequency content
of our natural image stimuli; we return to this
issue in the Discussion. In contrast, scene-selective
regions tended to have largest average sensitivity
for vertical (0°) and horizontal (90°) orientations.
Face- and body-selective regions displayed a different
pattern, with the highest sensitivity values for oblique
orientations 30° and 150°. Along the spatial frequency
axis, early visual areas tended to have the highest
average sensitivity for spatial frequencies between 2 and
5 cycles/°, while spatial frequency sensitivity profiles
in face-selective regions peaked at a lower spatial
frequency of around 1 to 2 cycles/°. Scene-selective
region RSC showed maximal sensitivity for high spatial
frequencies.

Consistent with the ROI-averaged sensitivity profiles,
differences were also evident in the distribution of peak
sensitivity values (i.e., “preferred” feature values) across
individual voxels within each ROI (Supplementary
Figure S2). With regard to orientation sensitivity,
early visual as well as face-selective and body-selective
ROIs had a majority of voxels that preferred oblique
orientations (45°/135°), although as in the previous
analysis, the distribution in face-selective ROIs
was shifted slightly toward vertical relative to the
distribution in early visual cortex. In contrast, both
IPS and the scene-selective ROIs included a mixture of
voxels that preferred vertical (0°) and horizontal (90°)
orientations. In these areas, there was a relationship
between preferred orientation and preferred spatial
frequency, with many of the horizontal-preferring
voxels tending to be tuned for high spatial frequencies
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Figure 5. Feature selectivity of voxels differs across early visual and category-selective ROIs. (A) The feature sensitivity profile of each
ROI is plotted in a two-dimensional representation, where the x-axis indicates orientation and the y-axis indicates spatial frequency.
Feature sensitivity (ρ) was estimated by computing the correlation between the predicted encoding model response for validation set
images and the activation in each feature channel for the same images (see Methods for details). (B) The average orientation
sensitivity profile (collapsed across spatial frequency) for each ROI. (C) The average spatial frequency sensitivity profile (collapsed
across orientation) for each ROI. In (B) and (C), black lines indicate the participant average, and gray shaded error bars indicate ± 1
SEM across participants. See Supplementary Figure S2 and Supplementary Figure S3 for the distribution of peak feature sensitivity
values across voxels within ROIs and on a flattened cortical surface. (D) The difference between the average feature sensitivity profiles
for face-selective areas (OFA, FFA) and the profiles from scene-selective areas (OPA, PPA, RSC).

Downloaded from intl.iovs.org on 04/26/2024



Journal of Vision (2023) 23(4):8, 1–32 Henderson, Tarr, & Wehbe 17

Figure 6. Semantic category selectivity for each ROI. The partial correlation (ρ) between voxel responses in each ROI and each of eight
high-level semantic categories (see Methods for details), averaged over all voxels within each ROI and participant. Gray points
indicate single participants, and error bars represent ± 1 SEM across eight participants. See Supplementary Figure S5 for the
voxelwise selectivity values plotted on a flattened cortical surface.

and many of the vertical-preferring voxels tending to be
tuned for lower spatial frequencies. EBA also included
a group of voxels that preferred horizontal orientations
and high spatial frequencies.

Of note, these results were not dependent on
assuming any particular shape for orientation and
frequency sensitivity profiles. A supplementary
analysis (Supplementary Figure S4) revealed that
while the spatial frequency sensitivity profiles for most
voxels tended to have only one peak, a significant
proportion of voxels across all areas had orientation
sensitivity profiles that were bimodal, having two
peaks (see Methods for details). When these bimodal
voxels were analyzed based on the orientations at
which their two peaks occurred, they largely fell
into groups that matched the results of our previous
analysis (i.e., bimodal voxels in face-selective areas
tended to have two peaks at 30°/150°, and bimodal
voxels in scene-selective areas tended to have two
peaks at 0°/90°). This suggests that the orientation
biases in these areas were widespread across voxels,
regardless of the exact shape of their sensitivity
profiles.

To further aid interpretation of these results and
link them to the image statistics analyses (Figure 2), we
also analyzed the degree to which average activation in
each ROI was correlated with each high-level semantic
category (Figure 6). Unsurprisingly, this revealed a
distinction between the face- and body-selective areas
versus the scene-selective areas, in that activation of
voxels in OFA, FFA, and EBA was more correlated
with faces and animate objects than buildings and
inanimate objects, while activation in RSC, PPA, and
OPA was more correlated with buildings and inanimate

objects. RSC additionally showed selectivity for large
over small objects, which was also evident more weakly
in OPA and PPA, while OFA, FFA, and EBA each
exhibited selectivity for small over large objects. Both
OPA and PPA showed selectivity for indoor scenes over
outdoor scenes, while RSC was positively correlated
with both indoor and outdoor scenes.

These results, along with the feature sensitivity
analyses, provide support for our hypothesis that
low-level feature biases in higher visual areas are
aligned with the roles of these areas in category
processing. On the one hand, scene-selective ROIs
have feature sensitivity profiles that match the most
diagnostic features for buildings and inanimate objects
(Figure 2A), such as vertical and horizontal orientations
(see Supplementary Table S5 for a quantification of
this alignment). Consistent with RSC’s selectivity for
large objects, the most preferred features for RSC are
similar to those that distinguish large objects from
small (Figure 2, bottom row). On the other hand,
in face- and body-selective areas, feature sensitivity
profiles are aligned with the most diagnostic features
for faces, animate objects, and small objects, consistent
with the measured category selectivity of these areas.
Finally, early visual areas, for example, V1 and V2,
which exhibited little category selectivity, were aligned
with the features that had the lowest overall mean and
variance across all images (Figure 2B), in addition to
being aligned with features that were diagnostic of
small objects. This latter finding appears consistent with
the importance of generic (i.e., category-independent)
image statistics as a characteristic of tuning properties
in early visual areas; we expand on this point in the
Discussion.
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Figure 7. Spatial selectivity of voxels differs across early visual and category-selective ROIs. (A) Distribution of the best pRF parameters
across all voxels in early visual (top), scene-selective (middle), and face-selective (bottom) ROIs; see Supplementary Figure S6 for all
individual ROIs. (B) Relationship between pRF eccentricity and pRF size. (C) Relationship between the preferred spatial frequency of
each voxel (computed as in Figure 5) and the pRF size. In (B) and (C), voxels are binned according to pRF size, and error bars reflect
mean ± 1 SD across voxels within each bin. (D) Visualization of the coverage of the visual field by pRFs in each ROI, obtained by
averaging the pRFs over individual voxels in each ROI. (E) The mean of the aggregated pRF values in each visual field quadrant (i.e.,
mean of quadrants in each image of panel (D)). * indicates significance of paired t-test for the upper versus lower visual field
difference, FDR-corrected α = 0.01. Error bars indicate ± 1 SEM across participants. Note that values in panel (D) have been
normalized to have a maximum of 1 for visualization purposes, and values in (E) are not normalized.

Spatial selectivity in visual cortex

Analyzing the spatial selectivity of voxels estimated
by our encoding model (pRFs; see Methods for details)
revealed several trends among brain regions. We found

that the median size (σ ) of pRFs was smallest in
V1 and tended to increase progressively along the
anterior axis of the brain, with more large pRFs
observed in higher areas like PPA, RSC, FFA, and EBA
(Figure 7A and Supplementary Figure S6). Within each
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ROI, pRF eccentricity tended to scale positively with
pRF size (Figure 7B). These results are consistent with
past work (Dumoulin & Wandell, 2008; Klink et al.,
2021; Vo et al., 2017) and thus provide validation of our
model-fitting procedure. The preferred spatial frequency
of voxels also exhibited a relationship with pRF size,
with smaller pRFs tending to be associated with
higher spatial frequencies, particularly in early areas
(Figure 7C). Also consistent with past work, we found
that in early visual areas, a correlation was evident
between preferred orientation and preferred angular
position (Supplementary Figure S7). This result aligns
with previous findings of radial bias in early visual
cortex (Freeman et al., 2011; Sasaki et al., 2006) and
provides additional support for the validity of both our
spatial selectivity and feature selectivity estimates.

In addition to these general trends, further
examination of the pRF parameters in each ROI
indicated biases toward particular portions of the visual
field. Focusing first on the eccentricity of pRF centers,
we found that face-selective ROIs, especially OFA,
had a relatively high proportion of voxels with pRFs
close to the central visual field, while scene-selective
regions had relatively more voxels with pRFs in the
periphery (Figure 7A and Supplementary Figure S6).
This result is consistent with previous findings of a
central bias for face representations and a peripheral
bias for scene representations (Hasson et al., 2002;
Levy et al., 2001). In addition to eccentricity, different
ROIs also exhibited differences in the distribution of
pRF vertical positions (Figure 7A). Both hV4 and
RSC tended to have more pRFs with centers in the
upper visual field, while other areas, including OPA and
EBA, tended to have more centers concentrated in the
lower visual field. To quantify this effect, we computed
a measure of pRF coverage across the entire visual
field by aggregating all pRFs across all voxels for each
participant and then taking the mean (Figure 7D; see
Methods). Taking the average of these coverage plots
within each visual field quadrant provided a measure
of pRF coverage for each quadrant (Figure 7E; Silson
et al., 2015). Note that this measure is different from
counting the number of pRF centers in each quadrant
because it takes into account pRF size as well as center.
Across participants, a significant interaction between
pRF coverage of the upper versus lower visual field and
ROI was found (three-way repeated-measures ANOVA
with ROI, vertical position, and horizontal position
as factors: main effect of ROI, F(11, 77) = 0.00, p =
1.0000; main effect of vertical position, F(1, 7) = 3.29, p
= 0.1124; main effect of horizontal position, F(1, 7) =
3.89, p = 0.0893; interaction between ROI and vertical
position, F(11, 77) = 10.68, p < 10−4; see Supplementary
Table S6 for all interactions). Post hoc tests revealed
that pRF coverage was higher for the upper versus the
lower visual field in hV4, while average pRF coverage
was higher for the lower versus the upper visual field

in V3, V3ab, OPA, OFA, and EBA (paired t-test with
permutation; FDR-corrected α = 0.01). No differences
in coverage of the left versus the right visual field were
observed.

Comparing these spatial biases to the distribution
of high-level semantic category information across
the visual field (Figure 3) reveals several relationships.
The lower half of the visual field, which contains more
information about several object categories—building,
face, inanimate, and small—is overrepresented within
the category-selective ROIs OPA, OFA, and EBA. This
suggests a bias of these areas toward a portion of the
visual field useful for object detection. The central visual
field, which was found to contain more information
about faces, animate objects, large objects, and small
objects, was represented most strongly in face-selective
areas, particularly OFA. In contrast, scene-selective
areas like PPA and RSC had a greater frequency of
voxels with peripheral pRFs. This finding is consistent
with the observation that peripheral pRFs were more
informative for detecting indoor and outdoor scenes.
Finally, our decoding analysis (Figure 3) revealed that
while large pRFs were more informative for detecting
indoor and outdoor scenes as well as inanimate and
small objects, small pRFs were more informative
for detecting faces and animate objects. Thus, the
finding that face-selective areas, particularly OFA, had
relatively more voxels with the smallest pRF sizes is
consistent with the task-relevant processing demands
for detecting faces and other animate objects.

Disentangling feature selectivity and category
selectivity

Given that our image set consists of natural scene
images conveying semantic category information in
addition to visual features, an important question
is the extent to which our measurements of visual
feature selectivity are influenced by responses to the
semantic information itself. To address this possibility,
we constructed a second encoding model whose
features described the presence of 200 different object
categories in the image (“COCO-all” model; see
Methods for details). This model is intended to capture
the contribution of explicit selectivity for semantic
categories to voxel responses. We evaluated how much
variance in the voxel responses was explained by the
COCO-all feature space by fitting the COCO-all model
first on the raw data and then on the residuals of the
Gabor model fit (Figure 8A). This analysis revealed that
the COCO-all model explained a substantial portion of
variance in all visual areas, with highest R2 in higher
visual areas such as PPA. At the same time, a portion
of the variance explained by the COCO-all model was
shared with the Gabor model, as indicated by a drop in
R2 when fitting on the Gabor model residuals (light blue
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Figure 8. Visual feature selectivity persists after regressing out the contributions of explicit category selectivity from the voxel
responses. (A) R2 for the COCO-all semantic encoding model (a model whose features describe the presence of diverse object and
stuff categories in the image; see Methods for details), obtained by fitting the raw data or using the residuals of the Gabor encoding
model. (B) R2 for the Gabor model, obtained using the raw data or the residuals of the COCO-all semantic encoding model. Error bars
indicate ± 1 SEM across eight participants, and gray dots indicate individual participants. Black brackets above each bar indicate the
noise ceiling (mean ± 1 SEM) for each ROI. (C, D) The average feature sensitivity profile for each category-selective ROI (x-axis
represents orientation, y-axis represents spatial frequency), computed using the model fit on the raw data (C) or fit on the residuals of
the COCO-all model (D). Note that the panels in (C) are similar to Figure 5, except that the voxels have been additionally thresholded
based on R2 for the Gabor model fit to the COCO-all residuals (see Supplementary Table S4 for voxel counts after thresholding).
(E) Feature sensitivity profiles marginalized over one dimension at a time (top = orientation sensitivity profiles, bottom = spatial
frequency sensitivity profiles). Dark gray indicates the model fit on the raw data, and blue indicates the model fit on the COCO-all
residuals. Shaded error bars indicate ± 1 SEM across participants. (F) The average correlation between individual voxel feature
sensitivity profiles (i.e., sensitivity for each of the 96 Gabor features) that were estimated using the raw data or the residuals of the
COCO-all semantic model, averaged across voxels in each ROI. High values indicate that feature selectivity was similar whether fitting
on the raw data or the residuals. Open circles and error bars indicate mean ± 1 SEM across eight participants, and gray dots indicate
individual participants.

bars vs. dark blue bars in Figure 8A). This drop was
proportionally largest in early visual areas and smaller
in higher visual areas, consistent with semantic category
features making a larger unique contribution to the
responses of higher visual areas. Next, we evaluated
how much variance was uniquely contributed by the
Gabor model features by performing the analysis in
the opposite direction: fitting the Gabor model on the
residuals of the COCO-all model (Figure 8B). This
revealed a substantial drop in R2 relative to fitting the
Gabor model on the raw data, suggesting that the

unique variance contributed by the Gabor features was
modest, particularly in higher visual areas. However,
a permutation test revealed that many voxels in every
ROI were still predicted with above-chance accuracy by
the Gabor model fit to the COCO-all model residuals.
This result indicates that the Gabor model explained a
significant amount of unique variance in these voxels
(all p-values significant following FDR correction
with α = 0.01, see Methods; see Supplementary
Table S4 for list of voxel counts in each area after
thresholding).
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Given that many voxels had significant unique
variance explained by the Gabor model relative to
the semantic category model, we were then able to
ask whether there was any change in the estimated
feature sensitivity of these voxels before and after
regressing out the contributions of the COCO-all
feature space. The rationale for this is that any feature
selectivity that is consistent across these methods likely
reflects true sensitivity to low-level features, exceeding
what is explainable based on category selectivity
alone. Critically, this analysis revealed that feature
selectivity remained largely consistent after removing
the contributions of explicit semantic category
selectivity from the voxel responses (Figures 8C–F).
This can be seen by comparing the overall feature
sensitivity profiles between the raw fits (Figure 8C)
and the residual fits (Figure 8D) and was quantified
by computing a correlation coefficient between the
feature sensitivity profiles across the two methods
(Figure 8F). The largest changes in feature sensitivity
when regressing out category selectivity were observed
in PPA, followed by OPA, RSC, and EBA, although
the correlation between feature sensitivity from the
raw data and from the residuals was still positive on
average in all areas. The changes in both OPA and PPA
appeared to be related in part to the spatial frequency
sensitivity of voxels. In the raw data, OPA and PPA
were, on average, negatively correlated with feature
channels corresponding to high spatial frequencies and
diagonal orientations, while after regressing out the
residuals of the COCO-all model, the average feature
sensitivity for these channels was close to zero, and the
overall sensitivity to high spatial frequencies increased
(Figure 8E). One possible explanation is that the
diagonal high spatial frequency channels were also
inversely correlated with the “indoor” category as well
as the “inanimate” category (Figure 2), both categories
with which both OPA and PPA were positively
correlated (Figure 6). Thus, the shift in their feature
tuning when semantic category selectivity was regressed
out may indicate that in our original analysis, some
aspects of the feature sensitivity in these areas were
actually reflective of sensitivity for indoor scene images
and/or inanimate objects. In contrast, feature tuning in
all early visual areas as well as in face-selective areas
OFA and FFA was similar whether estimated from the
raw data or from the residuals (Figure 8F). This latter
result suggests that the measured feature selectivity in
most visual areas was not driven by signals related to
category selectivity.

As an additional way to disentangle the effects of
category selectivity and feature selectivity, we next refit
the encoding models using images of only one category
label at a time (i.e., only indoor scenes, only images
with an animate object; see Methods). We compared
the tuning properties for models fit using only one
category of images at a time, as well as for models fit

using balanced sets of images that represented multiple
categories equally (see Methods). In agreement with the
results of the previous analysis, we found that visual
feature selectivity was largely stable across categories
(Figure 9). Across all areas, feature sensitivity profiles
for single categories were positively correlated with
those for balanced sets of images (Figure 9B), with the
highest correlation (tuning similarity) values obtained
in early visual cortex and OFA and lowest values
in scene-selective ROIs and EBA. In scene-selective
ROIs OPA, PPA, and RSC, low tuning similarity
values were obtained for the “outdoor” and “animate”
categories, which may reflect that these areas are all
positively correlated with the “indoor” and “inanimate”
categories and thus may have a lower signal-to-noise
ratio when those preferred image categories are absent
(Figure 6). As suggested in the previous analysis,
this result may also signify that sensitivity of these
ROIs for indoor scenes and/or inanimate objects can
explain a portion of their selectivity for low-level
features.

In addition to these effects in scene-selective areas,
EBA showed a change in its feature sensitivity profile
when fit on small objects only as opposed to a balanced
set of images, showing mostly negative sensitivity to
all feature values. This result was unexpected given
that EBA is on average more positively correlated with
small objects than large objects (Figure 6); therefore,
it is unlikely that these effects are entirely due to the
removal of category-selective signals. One possibility
is that there is a difference in EBA’s low-level feature
sensitivity as a function of real-world size, which may
reflect a meaningful difference in sensitivity profiles
or, alternatively, a difference in the signal-to-noise
ratios between responses to large and small objects.
A second possibility is that these effects are due to
differences in the properties of the model training
dataset across categories; for example, images with
small objects may contain especially low variance
for some feature channels or other properties that
could bias our estimates of feature sensitivity toward
negative values. To address this latter possibility, we
generated a set of simulated voxel responses to the
images in our dataset and measured how well the
true orientation and spatial frequency selectivity of
these simulated voxels could be recovered using our
fitting procedure (Supplementary Figure S9). This
analysis revealed that our procedure generated similarly
accurate estimates of feature selectivity whether fitting
was performed using images of just one category (such
as “small”) or a set that included multiple categories.
This argues against the idea that the sampling of the
data itself plays a role in the tuning differences seen
in Figure 9, instead suggesting that these patterns may
be due to an interaction between neural coding of
semantic category information and low-level feature
information.
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Figure 9. Visual feature selectivity is similar across semantic categories, with interactions evident in some areas. (A) Feature sensitivity
profiles computed using images from a single semantic category at a time; each row represents one semantic category, and each
column represents one higher visual cortex ROI. (B) The correlation between feature sensitivity profiles computed using images from
a single semantic category at a time versus those computed using a balanced set of images from two categories (i.e., for “animate,”
the balanced set contains equal numbers of animate and inanimate images; see Methods for details). Correlations were computed for
individual voxels and then averaged within ROIs and across participants; error bars indicate mean ± 1 SEM across eight participants.

Feature selectivity for the top category-
selective voxels

The above results provide support for our overall
hypothesis with respect to several functionally
defined ROIs. However, these ROIs do not provide
a perfect parcellation of visual cortex based on
category selectivity, as there are also category-selective
populations that fall outside the bounds of our ROIs
and there is heterogeneity in category selectivity within
individual ROIs (Supplementary Figure S5). To address

whether our results are generalizable beyond the set of
ROIs we have analyzed, we next identified groups of
voxels across all of visual cortex that had the highest
selectivity for each of our eight high-level categories
(excluding retinotopically defined early visual areas;
see Methods) and examined their feature selectivity.
Before fitting the Gabor encoding model, we used the
COCO-all model described previously to regress out
the contributions of explicit category selectivity from
the voxel responses (as in Figure 8). This ensured that
the results obtained were not a trivial consequence
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Figure 10. Orientation and spatial frequency selectivity of the most highly category-selective voxels. Selectivity was assessed based on
a partial correlation coefficient, and the top 500 voxels for each category were selected (see Methods). Feature sensitivity for each
group was computed using the Gabor model fit to the residuals of the COCO-all model (as in Figure 8). (A) The average feature
sensitivity profile for each group of voxels is plotted in a two-dimensional representation, where the x-axis indicates orientation and
the y-axis indicates spatial frequency. (B) The average orientation sensitivity profile (collapsed across spatial frequency) for each voxel
group. (C) The average spatial frequency sensitivity profile (collapsed across orientation) for each voxel group. In (B) and (C), black
lines indicate participant average, and gray shaded error bars indicate ± 1 SEM across participants.

of the fact that the top category-selective voxels
by definition had strong signals related to semantic
category membership. Note that in this analysis, the top
category-selective voxels are selected using the same
data used to quantify the voxels’ feature selectivity,
which does create a potential issue with circularity.
However, with this caveat in mind, the analysis provides
a test of the broad generalizability of our results and
complements our ROI-based analyses.

As shown in Figure 10, this analysis revealed several
patterns. First, the top face-selective, animate-selective,
and small-selective voxel groups had very similar average
profiles of feature sensitivity; this is likely because these
populations partially overlapped with one another. The
feature sensitivity of these voxels resembled that of
FFA, with highest sensitivity for orientations around

30° and 150°, especially at lower spatial frequencies
around 1 to 2 cyc/°. The bias toward these features
is consistent with the positive association between
these same features and the face, animate, and small
labels (Figure 2A). In contrast, the building-selective,
inanimate-selective, large-selective, indoor-selective, and
outdoor-selective voxel groups were all biased toward
cardinal orientations (0°/90°) over obliques (Figure
10B), a finding broadly consistent with the greater
diagnosticity of cardinal orientations for each of these
high-level categories. Each of these voxel groups was
also more sensitive to high spatial frequencies than low
(Figure 10C). This spatial frequency bias is consistent
with the image statistics of buildings, large objects, and
outdoor scenes, which are each positively associated
with high spatial frequencies, but is not entirely
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consistent with the image statistics of inanimate objects
and indoor scenes, which are both associated more
strongly with low spatial frequencies than high. Thus,
the inanimate-selective and indoor-selective populations
may represent a case where the spatial frequency biases
of neural populations are not entirely consistent with
their role in semantic processing. However, these
results overall suggest a broad pattern of consistency
between feature sensitivity of neural populations and
image statistics, demonstrating that this effect can be
identified beyond the boundaries of our original set of
ROIs.

Discussion

To extract meaning from the world, the visual
system leverages regularities of natural images such
as the co-occurrence statistics between sensory
features and semantic categories. Correspondingly,
such co-occurrence statistics may be reflected within
the high-level organization of human visual cortex.
We investigated this hypothesis by examining the
relationship between low-level visual and high-level
category selectivity in visual cortex. First, we
demonstrated that images of different semantic
categories exhibit distinct patterns of low-level visual
features and that information about these distinctions
is distributed nonuniformly throughout the visual field.
Second, we compared the selectivity for these same
features across brain areas thought to play different
roles in high-level visual processing and found several
correspondences. Areas selective for faces and bodies
were biased toward diagonal orientations, aligning with
the finding that diagonal orientations were associated
with faces and other animate, small objects, while on
the other hand, areas selective for scenes were biased
toward vertical and horizontal orientations, consistent
with the diagnosticity of these orientations for buildings
and other large, inanimate objects. In terms of spatial
selectivity, face-selective and scene-selective regions
were biased toward the central and peripheral visual
field, respectively, in agreement with our observation
that the central visual field was more informative for
detecting object categories, while the peripheral visual
field provided more information about scene categories.
Several ROIs were also biased toward the lower visual
field, which contained diagnostic features for multiple
high-level categories. Together, these results suggest
that cortical regions tend to overrepresent components
of the visual world that are informative for detecting
their preferred category. This supports the idea that
low-level feature biases observed throughout visual
cortex reflect the structure of the visual environment
and thus may provide organizational scaffolding for
high-level category representations.

Biases in orientation and spatial frequency
selectivity

With respect to the dimension of orientation,
our results revealed that scene-selective visual ROIs
and IPS were preferentially selective for the cardinal
orientations (0°/90°), while early visual, face- and
body-selective ROIs exhibited stronger selectivity for
diagonal orientations. The finding of cardinal bias in
scene-selective areas is consistent with past reports
(Nasr & Tootell, 2012), but the lack of such a bias
in early visual areas is surprising in light of past
work demonstrating that at the single-unit level, more
neurons in V1 and other early areas tend to be tuned
for vertical and horizontal orientations than diagonals
(Mansfield, 1974; Li et al., 2003; Shen et al., 2014). A
possible explanation for this discrepancy is the fact
that we measured neural responses to natural image
stimuli, whereas most past studies have used simple,
synthetic stimuli such as oriented gratings. Indeed,
at the behavioral level, it has been suggested that the
commonly observed “oblique effect,” in which observers
tend to show better performance close to the cardinal
orientations and worse at the obliques (Appelle, 1972),
may reverse when measured with more naturalistic,
broadband spatial frequency images (Essock et al.,
2003). This “horizontal effect” has been explained in
terms of a divisive normalization mechanism in which
the normalization pool acting to suppress neuronal
activity might be larger for cardinal orientations than
oblique orientations (Essock et al., 2003). Given that
horizontal and vertical orientations are overall more
common in natural images (see Figure 2B and Coppola
et al., 1998; Girshick et al., 2011; Henderson & Serences,
2021), this mechanism might serve to suppress the
most common orientations in natural images while
enhancing processing of uncommon (i.e., unexpected)
information (Essock et al., 2003). Such an explanation
would be consistent with the idea that orientation
anisotropies in early visual cortex reflect efficient
coding of natural image statistics and suppression of
redundant information (Barlow, 1961; Coen-Cagli et al.,
2015; Klímová et al., 2021). At the same time, another
factor that may contribute to the discrepancy between
our results and past electrophysiology work is the
difference in recording method. Since the fMRI signal
reflects pooled synaptic activity over many neurons, it
may give less precise measures of orientation selectivity
than single-neuron recordings (O’Herron et al., 2016)
and could also be differentially sensitive to the divisive
normalization mechanism described above. Supporting
this, some past fMRI studies, in agreement with our
results, have found greater activation of early visual
cortex for oblique than cardinal orientations (Mannion
et al., 2010; Swisher et al., 2010). On the other hand,
one fMRI study found that the relative strength of
activation for oblique orientations versus cardinals
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is dependent on stimulus properties such as contrast
(Maloney & Clifford, 2015), which lends support to the
idea that orientation selectivity may exhibit a different
functional signature when measured using natural
images versus gratings.

Considering these factors in toto, one interpretation
of the difference between early visual cortex and scene-
selective cortex in our results is that feature selectivity
in early areas may be more strongly constrained by
generic efficient coding of images, without regard to
semantic content, while higher visual areas may reflect
stronger semantic constraints, including the association
of cardinal orientations with scene-diagnostic content
such as large, inanimate objects. An increase in the
magnitude of cardinal orientation bias from early
to late stages of visual processing is also consistent
with past reports of stronger cardinal biases at deeper
layers of a convolutional neural network (Henderson &
Serences, 2021). This pattern is also compatible with
our findings in face- and body-selective ROIs, in which
orientation biases were similar to those in early areas,
but with a slight shift in the distribution of preferred
orientations toward vertical (shifting from peaks at
45°/135° to peaks at 30°/150°; Figure 5). Given that 30°
and 150° were the orientations most strongly associated
with faces and other animate objects (Figure 2), this
shift in orientation biases may reflect an increase in the
influence of semantic constraints on feature selectivity
when moving from early visual to higher visual regions.

With respect to a second low-level dimension, spatial
frequency, we again found evidence for differences
in the spatial frequency selectivity of voxels across
different ROIs. One notable finding was that RSC
and PPA each exhibited maximum sensitivity for high
spatial frequencies, although in PPA, this was only the
case after regressing out the contributions of category
selectivity from the voxels’ responses (Figure 8). The
finding of high spatial frequency selectivity in PPA
has been reported previously (Kauffmann et al., 2015;
Rajimehr et al., 2011), although others have reported
relatively less sensitivity to high spatial frequency in
RSC (Kauffmann et al., 2015). Further supporting the
relevance of high spatial frequencies for processing in
scene regions, a recent study also showed that decoding
of scene categories in PPA and RSC was driven
predominantly by high spatial frequency information
(Berman et al., 2017). Our results are consistent with
this finding, and we further show that high spatial
frequency features carry information about semantic
categories such as buildings and outdoor scenes
(Figure 2). Thus, the high spatial frequency biases
in scene-selective ROIs appear to be consistent with
their proposed roles in scene processing. In contrast to
scene-selective regions, face-selective areas OFA and
FFA were observed to be more sensitive to low spatial
frequencies, with maximum sensitivity at around 1 to
2 cyc/°. This is consistent with both the observation

that these lower frequencies were associated with faces
and other animate objects and past work implicating
low spatial frequencies in face processing, particularly
for global configural processing (Goffaux et al., 2005;
Goffaux & Rossion, 2006).

Biases in spatial selectivity

With respect to spatial selectivity, we found evidence
for biased coverage of the visual field in several ROIs,
as well as corresponding biases in the distribution
of category-diagnostic feature information around
the visual field. In particular, category-selective areas
OPA, OFA, and EBA all showed bias in favor of
the lower half of the visual field (Figure 7), and
correspondingly, the decodability of several high-level
semantic categories was better in the lower visual field
(Figure 3). These findings are consistent with past
reports of high-level visual areas on the lateral surface
of the brain tending to be biased in favor of the lower
hemifield (Sayres & Grill-Spector, 2008; Schwarzlose et
al., 2008; Silson et al., 2016; Silson et al., 2015), as well
as with past findings of scene-diagnostic objects tending
to be more concentrated in the lower hemifield (Greene
et al., 2013). We build on this work by demonstrating
that high-level object and scene properties are more
easily decodable from features in the lower versus the
upper visual hemifield and that this spatial bias in the
visual environment is reflected in patterns of selectivity
within specific visual areas. Of note, there is some
evidence from past studies for an upper visual field
bias in visual areas on the ventral surface, including
PPA and FFA (Groen et al., 2017; Silson et al., 2015),
although at least one study found no evidence for an
upper visual field bias in FFA (Finzi et al., 2021). We
did not find evidence for a visual field bias in FFA or
PPA in our main set of pRF analyses. However, in
a supplementary analysis, where we fit pRFs using a
different model, some evidence for an upper visual field
bias was observed in both PPA and RSC, although
not FFA (Supplementary Figure S8). These disparate
results suggest that methodological choices may be a
contributing factor to the different measurements of
visual field bias in ventral visual cortex across studies.

Previous work has also reported a lower visual field
bias in early visual cortex, with more cortical surface
area allocated to representing the lower versus upper
vertical meridian in V1 (Benson et al., 2021). Similarly,
there are reports that pRF sizes are smaller and the
cortical magnification factor is larger in the lower
versus upper visual field in V1, V2, and V3 (Silva et al.,
2018). These results are broadly consistent with our
finding that the lower visual field was overrepresented
within V3, as well as mid-level retinotopic area V3ab,
although we did not find evidence for a lower visual field
advantage in V1 or V2. These differences are likely due
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to differences in methodology, such as the fact that past
results were based on dedicated retinotopic mapping
experiments, whereas ours were based on model-based
pRF estimates obtained from responses to natural
scene viewing, as well as the fact that we computed
pRF coverage of each hemifield as opposed to cortical
surface area. We also did not analyze the dependence
of the vertical meridian asymmetry on eccentricity, as
has been done in past work. Such considerations are
beyond the scope of our current study, but whether
converging results can be obtained using our modeling
approach remains an interesting question for future
research.

In addition to biased coverage of the lower versus
upper visual hemifield, we observed biases along
the central to peripheral axis. A central bias was
measured in face-selective areas, particularly OFA,
while scene-selective areas PPA and RSC had relatively
more voxels with peripheral pRFs. These findings are
broadly consistent with past findings of central and
peripheral biases in face- and scene-selective areas,
respectively (Finzi et al., 2021; Hasson et al., 2002; Levy
et al., 2001). Compared to the large effects measured in
these past studies, however, the central-to-peripheral
bias we measured was relatively subtle. One possible
contributing factor to this difference is that our stimulus
was smaller (an 8.4° square) than that used in past work
(Hasson et al., 2002, used a circle of max diameter
20°). In addition to these findings regarding neural
tuning properties, we also extended this past work by
showing that information carried by Gabor features
about the presence of faces, animate objects, small
objects, and large objects was higher for more central
pRF positions, while information about the indoor
versus outdoor scene distinction was higher for more
peripheral pRF positions. The role of peripheral and/or
global image features in supporting scene perception
has been suggested by past work (Greene & Oliva,
2009a, 2009b; Groen et al., 2017). The correspondence
between these sets of findings is consistent with the
idea that face-selective areas are biased in favor of the
detailed parts of the image that may be informative
for face detection (i.e., the central visual field), while
scene-selective areas are biased in favor of the parts of
the image more informative for processing large-scale
scene distinctions.

Interactions between feature and category
coding

Taken together, the above results provide evidence
for reliable, selective sensitivity to low-level features
throughout the entire visual cortical hierarchy.
Moreover, we demonstrate that the feature selectivity
seen in higher visual cortex cannot be attributed solely
to coding of semantic category information. That

is, even after removing the contributions of explicit
category selectivity from voxel responses, a Gabor
encoding model predicted a significant amount of the
variance, and biases in feature selectivity for each brain
region were largely stable following this manipulation.
Our observation is in keeping with past work showing
low-level feature selectivity and biases for particular
features in higher visual cortex regions (Bermudez
et al., 2009; Nasr & Tootell, 2012; Rajimehr et al.,
2011; Vogels & Orban, 1994; Yue et al., 2014) and
supports the interpretation that higher visual cortex
responses reflect a mixture of visual and categorical
information.

At the same time, our results also suggest potential
interactions between feature coding and category
coding in some higher-level areas, particularly in
scene-selective visual regions and EBA. In OPA and
PPA, the sensitivity to spatial frequency changed when
category selectivity was regressed out of the voxel
responses (Figure 8), and in OPA, PPA, and EBA,
feature sensitivity profiles changed somewhat when
fitting models on images from different high-level
categories (Figure 9). Simulations suggested that
these effects were not driven by differences in dataset
sampling across these categories (Supplementary
Figure S9), indicating that feature sensitivity was at
least partly dependent on the category of images.
These interactions could potentially take the form
of a difference in signal-to-noise ratio (SNR) across
categories—for example, since OPA and PPA are
each on average more responsive to large, inanimate
objects and indoor scenes, this could lead to lower
SNR for detecting low-level feature sensitivity with
images of small, animate objects and/or outdoor scenes.
Such interactions could also reflect more complex
coding schemes, such as nonlinear mixed selectivity
for high-level categories and low-level visual features.
Modeling the presence of additional mid-level or
high-level visual features may provide further insight
into these possibilities; this remains a question for
future work.

In past work, several theoretical proposals have been
put forth to explain the relationship between visual and
category selectivity. One hypothesis is that functional
selectivity for a category reflects a combination,
either additive or nonlinear, of selectivity for a set of
underlying features that comprise the category (Op de
Beeck et al., 2008). Under such a coding scheme, neural
populations might be selective for sets of features that
are diagnostic of a particular category but also exhibit
some residual selectivity for the category itself (Bracci
& Op de Beeck, 2016; Bracci et al., 2017). Similarly,
work using synthetic stimuli has shown that mid-level
visual features, in the absence of semantic information,
can generate signatures of categorical selectivity in
ventral visual cortex but that other (possibly semantic)
features may be required to elicit the strongest level of
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category selectivity in these regions (Long et al., 2018).
Our results are consistent with this model, based on
our finding that low-level visual features and semantic
category features, beyond the substantial overlap in
the variance explained by each factor, each explained
significant unique variance within higher visual cortex
(Figure 8).

Associations between low-level features and
semantic categories

Our measurements of the associations be-
tween low-level features and semantic categories
(Figure 2) are consistent with several earlier studies.
For example, Torralba and Oliva (2003) compared the
spectral content for a range of image categories and
found differences between scene categories, as well as
between images of different object classes. Consistent
with our findings, certain classes of outdoor images,
such as forests and cities, showed larger power at
high spatial frequencies. Similarly, certain classes of
outdoor images, such as beaches and highways, had
higher power at horizontal orientations. At the object
category level, Torralba and Oliva reported spectral
differences across images containing animals versus
other objects, which is consistent with our observation
that certain orientation channels were associated
with animate over inanimate objects. However, an
important difference between our approach and theirs
is that we labeled images according to their animacy
or inanimacy in a spatially specific manner—when
we computed the features that were correlated with
animacy, we only used features extracted from image
patches that actually contained an inanimate object,
an animal, or a person. Thus, the features correlated
with animacy in our analyses are not likely to have
been as strongly driven by background content as
those used in Torralba and Oliva’s work. Despite this,
there is still a correspondence between our finding that
diagonal orientations were positively associated with
the animate–inanimate axis and Torralba and Oliva’s
finding that images with animals had relatively more
power at diagonal orientations (i.e., were less strongly
dominated by cardinal orientations) than images with
other types of objects. Our finding that vertical and
horizontal orientations were associated with buildings
and other large objects is also consistent with their
observation of strong cardinal biases in scenes including
buildings and/or cars. The relationship between cardinal
orientations and large objects is also consistent with
the observation that objects having a large real-world
size are dominated by boxy contour features (Long
et al., 2016; Nasr et al., 2014). Importantly, our
results build on these past observations by providing
detailed comparisons of the correspondence between

a fine-grained bank of Gabor features and several
high-level semantic categories. These measurements
provide a foundation for interpreting the fine-grained
biases in feature representations within visual
cortex.

Limitations of the natural image statistics
hypothesis

Although our results are primarily in agreement
with the hypothesis that low-level tuning biases in
higher visual cortex reflect natural image statistics,
some aspects of our results do not align with this
hypothesis. First, we found evidence that in OPA and
PPA, feature sensitivity changed when explicit category
selectivity was regressed out, with the corrected feature
sensitivity of these areas reflecting greater sensitivity to
high spatial frequencies. The “true” spatial frequency
sensitivity of these areas was thus more closely aligned
with the diagnostic features for outdoor scenes than
indoor, which is at odds with the observation that
OPA and PPA were more correlated with the indoor
scene label. Similarly, when we looked at feature
sensitivity of the top indoor-selective and the top
inanimate-selective voxels, each of these populations
showed biases toward high spatial frequencies over low,
which is inconsistent with the statistics of indoor scenes
and inanimate objects. Thus, the categories of indoor
scenes and inanimate objects may represent cases where
the statistics of images are not perfectly matched by
the spatial frequency sensitivity of category-selective
neural populations. This could suggest that detection
of indoor scenes and/or inanimate objects is more
strongly driven by mid-level or high-level features than
Gabor-like features.

The organization of higher visual cortex

We find support for our overall hypothesis both
within commonly used category-selective ROIs, as
well as within voxel populations beyond these defined
ROIs (Figure 10). The consistency of these results is in
line with the idea that the large-scale organization of
higher visual cortex may be better understood in terms
of broad visual feature dimensions that are mapped
onto the cortex in a continuous fashion (Bao et al.,
2020; Konkle & Caramazza, 2013; Op de Beeck et al.,
2008), rather than as a discrete set of regions processing
disparate types of information. Within this framework,
the biases that we observed in feature tuning within
functionally localized regions of visual cortex may
be interpreted as reflecting the correspondence
between maps encoding features at different levels
of complexity. This view is also compatible with our

Downloaded from intl.iovs.org on 04/26/2024



Journal of Vision (2023) 23(4):8, 1–32 Henderson, Tarr, & Wehbe 28

observation that there was heterogeneity for the feature
sensitivity profiles and semantic selectivity across voxels
within a given ROI (Supplementary Figure S3 and
Supplementary Figure S5). It seems plausible that the
heterogeneity in feature tuning of voxels across an ROI
is related to heterogeneity in their semantic selectivity;
again, future work will be needed to fully explore this
possibility.

The structured relationship between category
selectivity and visual feature selectivity in the brain
may emerge due to multiple factors, including visual
experience during development and functional or
anatomical neural constraints. One account for the
organization of visual cortex suggests that from infancy,
the primate brain includes a “proto-organization”
that may be a precursor to the large-scale maps of
category and feature selectivity observed in adult
brains (Arcaro & Livingstone, 2017; Livingstone
et al., 2019). These early topographic constraints,
including selectivity for low-level features such as spatial
frequency and curvature, may interact with visual
input to constrain where mature category-selective
visual areas will develop (Op de Beeck et al., 2019).
For example, retinotopic biases present in the early
visual system interact with the portion of the visual
field in which certain classes of stimuli tend to fall
(i.e., faces and words tend to be foveated, buildings
tend to land in the periphery), and this may lead to
a correspondence between retinotopy and category
selectivity (Hasson et al., 2002; Levy et al., 2001; see
Groen et al., 2022, for a review). Weak early biases for
features such as curvature may similarly lead cortical
populations to develop selectivity for those categories
in which such features are prominent (Livingstone et
al., 2019). Our results provide some support in favor
of this hypothesis, in that we find a correspondence
between the features and spatial positions associated
with a given category and the low-level tuning of
neural populations involved in processing that category.
Thus, it is plausible that experience with the statistics
of natural images during development, along with
some degree of early topographic organization, may
be sufficient to predict the organization of feature,
spatial, and category selectivity in the adult visual
system.

The functional role of tuning biases

Category-selective visual areas appear to contain
representations of diagnostic low-level features,
which could suggest that these low-level feature
representations play a functional role in category
perception. Although our study did not directly assess
this functional role, past work supports the idea that
low-level visual features may influence behavioral
judgments of object and/or scene category. For example,

rapidly classifying scenes into basic-level categories
may be mediated by global properties associated with
the spectral content of scenes (Greene & Oliva, 2009a,
2009b; Oliva & Torralba, 2001). Detecting object
categories, such as animals, may also be supported by
spectral differences across images (Torralba & Oliva,
2003). At the same time, other work has suggested that
in the case of animal detection, spectral features may
not be sufficient to predict behavior (Wichmann et al.,
2010) and that features more complex than spectral
content, such as mid-level textural features (Long et al.,
2016; Long et al., 2017) or contour junctions (Walther
& Shen, 2014), may be more useful in computing
semantic properties of objects and scenes. Additional
experiments are needed to determine whether the
feature biases we measured play a functional role in
behavior, but our results do add to a growing body
of evidence that low-level features contain potentially
informative cues to the semantic meaning of images.
We build on this past work by showing that these cues
are reflected in the brain across a range of visual areas
and semantic category distinctions.

Conclusion

Our results provide evidence supporting the theory
that representations of low-level features within
category-selective regions of visual cortex are aligned
with the high-level computational goals of these
regions. Moreover, this principle appears to hold for
category-selective neural populations across a wide
range of visual areas, even beyond ROI boundaries, and
for multiple semantic categories. Such findings suggest
that the computation of semantic meaning in the
visual system may reflect contributions from features at
multiple levels of complexity.

Keywords: category selectivity, orientation tuning,
population receptive field, natural image statistics,
encoding model
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