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In laboratory object recognition tasks based on
undistorted photographs, both adult humans and deep
neural networks (DNNs) perform close to ceiling. Unlike
adults’, whose object recognition performance is robust
against a wide range of image distortions, DNNs trained
on standard ImageNet (1.3M images) perform poorly on
distorted images. However, the last 2 years have seen
impressive gains in DNN distortion robustness,
predominantly achieved through ever-increasing
large-scale datasets—orders of magnitude larger than
ImageNet. Although this simple brute-force approach is
very effective in achieving human-level robustness in
DNNs, it raises the question of whether human
robustness, too, is simply due to extensive experience
with (distorted) visual input during childhood and
beyond. Here we investigate this question by comparing
the core object recognition performance of 146 children
(aged 4–15 years) against adults and against DNNs. We
find, first, that already 4- to 6-year-olds show
remarkable robustness to image distortions and
outperform DNNs trained on ImageNet. Second, we
estimated the number of images children had been
exposed to during their lifetime. Compared with various
DNNs, children’s high robustness requires relatively little
data. Third, when recognizing objects, children—like
adults but unlike DNNs—rely heavily on shape but not
on texture cues. Together our results suggest that the
remarkable robustness to distortions emerges early in
the developmental trajectory of human object
recognition and is unlikely the result of a mere
accumulation of experience with distorted visual input.
Even though current DNNs match human performance
regarding robustness, they seem to rely on different and
more data-hungry strategies to do so.

Introduction

At a functional level, visual object recognition is
at the center of understanding how we think about
what we see (Peissig & Tarr, 2007, p. 76). Subjectively,
visual object recognition typically seems to be effortless
and intuitively easy to us; it is, however, an extremely
difficult computational achievement. Arbitrary nuisance
variables like object distance (size), pose, and lightning
potentially exert a massive influence on the proximal
(retinal) stimulus, sometimes resulting in the very same
distal stimulus (three-dimensional object in a scene) to
have very different proximal stimuli. Conversely, for
any given two-dimensional image on the retina—the
proximal stimulus—there are an infinite number of
potentially very different three-dimensional scenes—
distal stimuli—whose projections would have resulted
in the very same image (e.g., see DiCarlo & Cox, 2007;
Pinto, Cox, & DiCarlo, 2008).1 The human ability to
recognize objects rapidly and effortlessly across a wide
range of identity-preserving transformations has been
termed core object recognition (see DiCarlo, Zoccolan,
& Rust, 2012, for a review). The computational
difficulty notwithstanding, human object recognition
ability is not only subjectively effortless, but objectively
often tremendously complex (e.g., Biederman, 1987 or
see Logothetis & Sheinberg, 1996; Peissig & Tarr, 2007;
Gauthier & Tarr, 2015, for reviews).

This computational complexity of (core) visual object
recognition is also reflected in the decade-long research
efforts it took computational models to reach human-
level object classification accuracy. It was not until
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2012, when Krizhevsky, Sutskever, and Hinton (2012)
trained brain-inspired deep neural networks (DNNs)
on 1.3M natural images that computational models
began to compete with humans in object recognition
tasks. Today, DNNs are the state-of-the-art models
in computer vision and surpass human performance
on standard object recognition tasks such as image
classification on the ImageNet dataset (e.g., see He,
Zhang, Ren, & Sun, 2015). It took even longer to obtain
models that are not only performing well on natural,
undistorted images similar to the training data but
also, crucially, on more challenging datasets, so-called
out-of-distribution (OOD) datasets containing, for
example, image distortions that the models had never
seen during training. This task is precisely what humans
excel at: robustly recognizing objects even under
hitherto unseen viewing conditions and distortions; in
machine learning lingo, humans show a high degree
of OOD robustness. Even though some of these
models have an innovative architecture and/or training
procedure—such as CLIP (Radford et al., 2021) or
other variants of vision transformers (Dosovitskiy
et al., 2021)—the most crucial feature to achieve
human-like OOD robustness appears to be training on
large-scale datasets (Geirhos et al., 2021). Although
standard training on ImageNet includes 1.3M images,
most models showing human-like OOD robustness
are trained on much larger datasets—ranging from
14M (Big Transfer models; Kolesnikov et al., 2020) to
940M images (semiweakly supervised models; Yalniz,
Jégou, Chen, Paluri, & Mahajan, 2019) and even to a
staggering 3.6B images (Singh et al., 2022). However,
both architecture and data matter—vision transformers,
for example, trained on ImageNet, are more robust
than standard DNNs trained on ImageNet—but
even standard DNNs trained on large-scale datasets
(such as Big Transfer models) achieve remarkable
robustness. This indicates that large-scale training may
be sufficient for OOD robustness in computational
models.2

It remains an open question, however, whether
large-scale experience is also necessary for robust
core object recognition. This is precisely the question
that we intend to answer with the present study: If
large-scale exposure to visual input is indeed necessary
to achieve a robust visual representation of objects,
then we would expect human OOD robustness to be
low in early childhood and to increase with age owing
to continued exposure during a lifetime. Alternatively,
human OOD robustness might instead result from
clever information processing and representation as
well as suitable inductive bias (Mitchell, 1980; Griffiths,
Chater, Kemp, Perfors, & Tenenbaum, 2010), achieving
OOD robustness with comparatively little data. In this
case, we would expect human OOD robustness to be
already high in early childhood. Both hypotheses can be
evaluated with developmental data.

Here we present a detailed investigation of the
developmental trajectory of object recognition and
its robustness in humans from age 4 to adolescence
and beyond. We believe that resolving the competing
hypotheses presented may be relevant for understanding
crucial aspects of both machine and human object
recognition: in terms of machine vision, it is unclear
whether large-scale training is the only way to achieve
robustness—if children were able to achieve high
robustness with little data, this would indicate that
the limit of data-efficient robustness has not yet
been reached. In terms of human vision, in contrast,
the developmental trajectory of object recognition
robustness is still a puzzle with many missing pieces,
limiting our understanding of the underlying processes
and how they develop.

Development of object recognition

Many cognitive abilities, like language or logical
reasoning, mature with time; motor skills, too, take
years to develop and be refined. What about our
impressive object recognition abilities, particularly
robustness to image degradations? Behavioral research
investigating the development of object recognition
(robustness) in children (after 2 years of age) and
adolescents is comparatively sparse, however (for an
overview, see the recent preprint by (Ayzenberg &
Behrmann, 2022). A number of reviews have pointed
out the lack of such studies (Rentschler, Jüttner,
Osman, Müller, & Caelli, 2004; Nishimura, Scherf, &
Behrmann, 2009; Smith, 2009). Clearly, the ventral
visual cortex is subject to structural and functional
changes from childhood through adolescence and into
adulthood (see Grill-Spector, Golarai, & Gabrieli,
2008; Ratan Murty, Bashivan, Abate, DiCarlo, &
Kanwisher, 2021 or Klaver, Marcar, & Martin, 2011,
for a review). It has been shown that young children
(5–12 years of age) already show adult-like category
selectivity for objects in the ventral visual cortex (Scherf,
Behrmann, Humphreys, & Luna, 2007; Golarai,
Liberman, Yoon, & Grill-Spector, 2010) and that the
magnitude of retinotopic signals in V1, V2, V3, V3a,
and V4 are approximately the same in children as in
adults (Conner, Sharma, Lemieux, & Mendola, 2004).
In addition, contrast sensitivity in V1 and V3a also
seems to reach adult level by the age of 7 (Ben-Shachar,
Dougherty, Deutsch, & Wandell, 2007). These findings
indicate that at least neural prerequisites for visual
object recognition are in place at a comparatively early
age.3

Most available behavioral data stem from children
younger than 2 years. Already at 6 to 9 months, infants
direct their gaze to objects named by their parents,
indicating at least a basic form of object recognition
(Bergelson & Swingley, 2012, 2015; Bergelson &
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Aslin, 2017). There are two major developmental
changes in those first two years of development.
First, children start to use abstract representations of
global shape rather than local features to recognize
objects (Smith, 2003; Pereira & Smith, 2009; Augustine,
Smith, & Jones, 2011). This change enables adult-like
performance in simple object recognition tasks and
is thought to facilitate generalization and increase
the robustness of object recognition (Son, Smith,
& Goldstone, 2008). Second, children start to use
object shape as the crucial property to generalize
names to never before seen objects—a tendency
termed shape bias (e.g., see Landau, Smith, & Jones,
1988). An empirical study suggests that these two
changes are connected developmentally, such that
the ability to form abstract representations of global
object shape precedes the shape bias (Yee, Jones, &
Smith, 2012). Furthermore, recent work has shown
that when recognizing objects, infants (6–12 months)
rely on the skeletal structure of objects. That is, the
global shape of an object seems to be represented by
extracting a skeletal structure (Ayzenberg & Lourenco,
2022).

To our knowledge, only one study has investigated
the development of object recognition after the age
of 2 systematically. Bova et al. (2007) have shown a
progressive improvement of visual object recognition
abilities in children from 6 to 11 years of age as
measured by a battery of neuropsychological tests.4
They report that simple visual abilities (such as shape
discrimination) were already mature at the age of 6,
whereas more complex abilities (such as the recognition
of objects presented in a hard-to-decode way) tended
to improve with age.5 However, this study did not
use stimuli typically used to assess object recognition
in adults or DNNs, preventing any quantitative
comparisons from being made—something we attempt
to remedy with the present study (but see Footnote 17).
In the present study, we investigate how well children of
different age groups (4–6, 7–9, 10–12, and 13–15) can
recognize objects in two-dimensional images at different
levels of difficulty (degree of distortions) to trace the
developmental trajectory of human object recognition
robustness.

Methods

General

The methods used in this study are adapted from
a series of psychophysical experiments conducted
by Geirhos et al. (2018, 2019). The paradigm is an
image category identification task to compare human
observers and DNNs as fairly as possible. Images are
presented on a computer screen, and for each image,

observers are asked to choose the corresponding
category as quickly and accurately as possible.
Concerning the fairness of the comparison between
humans and DNNs, one aspect needs to be highlighted:
Standard DNNs are typically trained on the ImageNet
(ILSVRC) database (Russakovsky et al., 2015), which
contains approximately 1.3 million images grouped
into 1,000 fine-grained categories (e.g., more than
one hundred different dog breeds). However, human
observers categorize objects most quickly and naturally
at the entry-level, which is very often the basic level,
such as, dog rather than German shepherd (Rosch,
1973; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1979). To account for this discrepancy and to provide
a fair comparison, Geirhos et al. used a mapping
from 16 human-friendly entry-level categories to their
corresponding ImageNet categories based on the
WordNet hierarchy (Miller, 1995).

We adapted the following aspects of the original
Geirhos et al. studies to make the paradigm more
suitable to test young children: We introduced a
certain degree of gamification, added more breaks,
and did not force the children to respond within 1,500
ms after stimulus offset to avoid undue stress. After
each block of 20 trials, children were free to either
quit the experiment or continue with another block.
Compared with Geirhos et al., we slightly increased
the stimulus presentation duration from 200 ms to
300 ms and only used stimuli that were correctly
recognized by at least two adults in the previous
studies. We used a between-subject design to test
participants on two different types of distortions:
binary salt-and-pepper noise and so-called eidolon
distortions (Koenderink, Valsecchi, van Doorn,
Wagemans, & Gegenfurtner, 2017). In an additional
experiment, we used texture–shape cue–conflict stimuli,
as in Geirhos et al. (2019). In what follows, we first
provide a description of the procedure, the introduced
gamification and the employed stimuli. We then proceed
by giving details on the tested participants (children,
adolescents, adults), the experimental setup, and the
evaluated DNNs.

Procedure

Each trial consisted of several phases. First, we
presented an attention grabber inspired by an expiring
clock (a solid white circle that empties itself within
600 ms) in the center of the screen. We chose a moving
stimulus instead of a more commonly used fixation
cross to compensate for possible weaker attention
in children. Second, the target image was shown in
the center of the screen for 300 ms, followed by a
full-contrast pink noise mask (1/f spectral shape) of
the same size and duration to prevent after-images
and limit internal processing time. Next, the screen
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Figure 1. Schematic of a trial. After the attention grabber clock
had expired (600 ms), the target image was presented for
300 ms, followed immediately by a full-contrast pink noise
mask (1/f spectral shape) of the same size and duration. After
the mask, participants had unlimited time to indicate their
response on the physical response surface. However,
participants were instructed to respond as quickly and
accurately as possible. After the participant responded, the
response surface was shown on the screen, and the
experimenter clicked on the icon corresponding with the
participant’s response. Icons on the response screen represent
the 16 entry-level categories—row-wise from top to bottom:
knife, bicycle, bear, truck, airplane,
clock, boat, car, keyboard, oven, cat,
bird, elephant, chair, bottle, and dog. Below
the response surface, there is a gamified progress bar indicating
the degree to which the current block has been completed.

turned blank, and participants were required to indicate
their answers. They did this by physically pointing to
1 of 16 icons corresponding with the 16 entry-level
categories on a laminated DIN A4 sheet arranged in a
4 × 4 grid (icon size: 3 × 3 cm). We chose this physical
response surface mainly for time efficacy (having
4-year-olds handle a computer mouse by themselves
can be a lengthy and somewhat unreliable undertaking).
Next, the 16 icons appeared on the screen, and the
experimenter recorded the response provided by the
child using a wireless computer mouse. As in the
experiments conducted by Geirhos et al., our icons were
a modified version of the ones from the MS COCO
website (https://cocodataset.org/#explore). Figure 1
shows the schematic of a trial.

All participants were tested in a separate, quiet
room—either in their school (children, adolescents)

or at home (adults). The experimental session started
with the presentation of example images. For each
category, we showed a prototypical example image in
the center of the screen and asked participants to name
the depicted object. The subsequent presentation of
the corresponding category icon indicated the correct
category. After completing all 16 examples, participants
completed 10 practice trials on undistorted color images
(no overlap with stimuli from experimental trials).
Extremely rarely, some of the youngest children failed
on two or more images and had to complete another
round of 10 practice trials. Before the experimental
trials started, a single distorted image (matched for
the given experimental distortion) was shown, and a
short story-like explanation was given to justify why
some of the subsequent images would be distorted.6
Experimental trials were arranged in blocks containing
20 trials each. After each block, participants received
feedback and were asked whether they would like
to continue, have a break or terminate the session.
Adults were not asked explicitly if they wanted to
terminate the session—but of course, all participants
were informed at the outset that they could abort
the experiment at any given time. Participants could
complete a maximum of 16 blocks (320 images)
in the eidolon and salt-and-pepper experiments
and 20 blocks (400 images) in the cue–conflict
experiment.

Gamification

To increase motivation and make the experiment
more appealing to children, we gamified several aspects
of the experiment. In the beginning, participants could
choose one of four characters (matched for gender)
corresponding with four different roles: spy, detective,
scientist, or safari guide. The chosen character had to
undergo a training session to improve her or his crucial
skill. The participants did not know that the crucial
skill—identifying objects as quickly and accurately
as possible—was the same for all characters. After
each trial, the chosen character was displayed at the
foremost position of a progress bar indicating how far
the participant had progressed in the current block
(level). After each block, participants were provided
with feedback designed to be perceptually similar
to the display of a game score in an arcade game.
There were three different types of scores. Participants
received 10 coins as a reward for a finished block
(not performance related). Additionally, for every two
correctly recognized images, they received a star
(performance related). If they scored more than eight
stars, they earned a special emblem matched for the
chosen story character.7 Different gamified elements are
visualized in Appendix A.
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Figure 2. Systematic degradation of images in the salt-and-pepper noise (a) and the eidolon (b) experiments. Note that even though
different degradation levels are shown for the same image, participants never encountered the same initial image multiple times.

Stimuli

Salt-and-pepper noise and eidolon distortion

As mentioned, we used images from 16-class-
ImageNet (Geirhos et al., 2018). A subset of 521
stimuli—stimuli that were correctly classified by at
least two adults in prior experiments—served as a
starting point for the present study. We chose this
subset because we feared that children’s motivation
might be weaker compared with that of adults and
wanted to avoid frustrating children with stimuli that
even adults are unable to recognize. We then randomly
sampled 320 images (20 for each of the 16 categories) to
be manipulated in the next step. For both experiments
(eidolon and noise), we manipulated the images to
four degrees, resulting in four different difficulty levels
per experiment. For the eidolon experiment, we used
the eidolon toolbox (Koenderink et al., 2017) with
the following settings: grain = 10, coherence = 1 and
four different reach levels corresponding with the four
difficulty levels (0, 4, 8, and 16). The higher the reach
level, the more distorted the images are and the more
difficult it is to recognize them. In the noise experiment,
a certain proportion of pixels were either set to a gray
value of 1 (white) or 0 (black). This manipulation is
often referred to as salt and pepper noise. The four
difficulty levels in this experiment corresponded with
four different proportions of flipped pixels (0, 0.1,

0.2, or 0.35). For example, 0.2 means that 20% of the
pixels are switched and 80% remain untouched. For
simplicity, we use the term difficulty level to refer to
both the different reach levels of the eidolon experiment
and the different noise levels of the salt-and-pepper
noise experiment. It is important to note, however, that
the difficulty levels were not matched precisely between
conditions, as can be seen in the results. Figure 2
displays an example image to which both distortions
were applied.

For each difficulty level, we randomly selected five
images per category to be distorted. Note that in both
experiments, the lowest difficulty level (either reach
level or proportion of switched pixels equals 0) can be
interpreted as only a grayscale transformation of the
original color images.8 Next, we divided the 320 images
into 4 chunks of 80 images each. Such a chunk features
5 images per category and 20 images per difficulty level.
From each chunk, we created 4 blocks of 20 images
each, resulting in 16 blocks that we later used in the
experiment. To minimize predictability, individual
blocks of 20 images were not balanced for categories
(i.e., a block could contain a variable number of images
from a given category). However, each block was
balanced for difficulty levels (five images per difficulty
level). To keep the participant’s motivation as high as
possible, we pseudo-randomized the order of image
presentation within each block during the experiment
given the following constraint: The first and last three
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Figure 3. Stimuli generation for the cue conflict experiment. Using style transfer (Gatys et al., 2016), a texture image (a) is combined
with a content image (b) to create texture–shape cue conflict stimulus (c). Note that participants never encountered texture and
content images. They only encountered texture–shape cue conflict images and original images (similar to content images but
featuring natural backgrounds). Figure adapted from Geirhos et al. (2019).

images of a block had to be easy to recognize (difficulty
level of one or two).

Cue conflict
In the cue conflict experiment, we used a subset of

images as used in Geirhos et al. (2019). These 224 ×
224 pixel cue conflict images are designed to have a
conflict between two cues, namely, object shape and
object texture, for example, the shape of a cat combined
with the texture of elephant skin (see Figure 3). The
stimuli were created using the style transfer method
(Gatys, Ecker, & Bethge, 2016), whereby the content of
an image (shape) is combined with the appearance of
another image (texture) using a DNN-based approach.
From the 1,280 cue conflict images created by Geirhos
et al. (2019), we sampled 240 images (15 per category)
to use in this experiment. We included 160 original
color images (10 per category) as a baseline to help keep
the task intuitive for the children (sampled from the
521-image subset of 16-class-ImageNet as described
elsewhere in this article). The whole sample of 400
images was split into 5 chunks of 80 images each—32
original images (2 per category) and 48 cue conflict
images (3 per category). As in the other 2 experiments,
we created 4 blocks (20 stimuli each) from each
chunk, resulting in 20 blocks that we later used in the
experiment. The selection of the images was again not
balanced regarding categories but for difficulty levels
(i.e., each block contained 8 original and 12 cue conflict
images). Again, the order of image presentation in the
experiment was pseudo-random with the following
constraint: The first and last three images had to be
original but not cue conflict images.

Participants

We collected 23,474 trials from a sample of 146
children and adolescents (4–15 years) and 9 adults.
Participants were assigned to one of three experiments:

Noise (48 children and three adults, 60% female),
eidolon (46 children and three adults, 45% female) and
cue conflict (52 children and 3 adults, 45% female).
Further descriptive information about the sample
and observations is presented in Appendix B. We
recruited children from 17 different schools in Bern
(Switzerland). The adult sample was recruited through
personal contacts. All participants reported normal or
corrected to normal vision, provided (parental) written
consent, and were tested in accordance with national
and international norms governing research with
human participants. The study was approved by the
institutional ethical review board of the University of
Bern (no. 2020-08-00003). As a token of appreciation
for their participation, children received a book of their
choice. Only one child decided to cancel the study right
after completing practice trials.

Apparatus

Programming and stimulus presentation were
realized with Python (version 3.8.2) on a Lenovo
Thinkpad T490s (Quad-core CPU i5-8365U, Intel
UHD 620 graphic card) running Linux Mint 20
Ulyana. We programmed the experiment’s interface
with the Psychopy library (Peirce et al., 2019; version
2020.2.4). The 14” screen (356 mm diagonal) had a
spatial resolution of 1,920 × 1,200 pixels at a refresh
rate of 120 Hz. The measured luminance of the display
was 361.4 cd/m2, and gamma was set to 2.2. Images
were presented at the center of the screen with a size of
256 × 256 pixels, corresponding, at a viewing distance
of approximately 60 cm, with 4° × 4° of visual angle.9
Note that viewing distance varied somewhat between
participants due to children’s agitation. For the whole
experiment, the background color was set to a gray
value in the [0, 1] range corresponding with the mean
grayscale value of all images in the dataset of the
particular experiment (eidolon, 0.452; noise, 0.459; and
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cue conflict, 0.478).10 All responses were recorded with
a standard wireless computer mouse.

Models

To investigate the effect of dataset size on model
robustness, we selected four representative models
from the modelvshuman Python toolbox (Geirhos
et al., 2021). The models were chosen according to the
following criteria: in terms of training dataset size,
they are separated by an approximate log unit each;
to a certain degree, they are all derivatives of ResNet
building blocks (He et al., 2015); and within the class
of models that satisfies the first two constraints, each
of them is the very best performing model in terms of
OOD accuracy as evaluated on the modelvshuman
benchmark—thus they are, as of now, some of the
most robust DNNs and, therefore, the strongest
DNN competitors for our human to DNN robustness
comparison. According to these criteria, the following
four models were chosen:

>1M: ResNeXt: a ResNeXt-101_32x8d model by
Xie, Girshick, Dollár, Tu and He (2017) trained on
1.3M images;
>10M: BiT-M: a BiT-M model by Kolesnikov et al.
(2020) based on a ResNetV2-152x2 trained on 14M
images;
>100M: SWSL: a SWSL model by Yalniz et al.
(2019) based on a ResNeXt-101_32x16d trained on
940M images;
>1,000M: SWAG: a SWAG model by Singh et al.
(2022) based on a RegNetY-128GF trained on 3.6B
images.

Additionally, we decided to include one widely
known DNN, VGG-19 by Simonyan and Zisserman
(2014), for comparison purposes because it is based
on a very simple architecture and has been studied
extensively in the past.

We used a single feed-forward pass with 224 ×
224 pixel RGB images except for the SWAG model,
which requires 384 × 384 pixel input. In this case,
the images were scaled up to 384 × 384 pixel using
PIL.Image.BICUBIC interpolation. For grayscale
images (noise and eidolon experiment), all three
channels were set to be equal to the grayscale image’s
single channel.

Results

Recent machine learning models have seen
tremendous gains in object recognition robustness,
predominantly achieved through ever-increasing

large-scale datasets. Here we ask whether human
robustness, too, may simply result from extensive
visual experience acquired during lifetime. If so, we
would expect human robustness to be low in young
children and to increase over the years. To this end,
we performed three comparisons between children
of different age groups vs. adults and vs. DNNs. We
first investigate the developmental trajectory of object
recognition robustness (section on developmental
trajectory). Having found essentially adult-level
robustness already in young children, we then perform
a back-of-the-envelope calculation to estimate bounds
on the number of images that children can possibly
have been exposed to (section on back-of-the-envelope
calculation). Finally, we investigate whether object
recognition strategies change over the course of
development (section on strategy development).

Developmental trajectory: Human object
recognition robustness develops early

To assess the developmental trajectory of object
recognition robustness, we measure classification
accuracy depending on the amount of image
degradation for two different experiments: salt-and-
pepper noise and eidolons (visualized in Figure 2). The
results are shown in the left column of Figure 4. In
addition to classification accuracy, we plot normalized
accuracy with respect to the initial accuracy at difficulty
level zero because this makes it easier to disentangle
the effects of initial accuracy and change in robustness
(right column in Figure 4).

First, looking at classification accuracy, it can be
seen that although the adults’ performance is close
to ceiling at difficulty level zero, there is a moderate
decrease in accuracy as the difficulty level increases
(dark red, circles). However, even at difficulty level
three, adults still demonstrate a fairly high accuracy
far above the chance level. The robustness trajectories
for DNNs differ dramatically (shades of blue and
violet): older models trained on ImageNet (>1M
images) are typically far below the human level
(VGG-19; ResNeXt), although modern models trained
on large-scale datasets (>10, >100 or even >1,000M
images) are sometimes even above the human level,
a finding consistent with Geirhos et al. (2021), who
reported that the model-to-human gap in OOD
distortion robustness has essentially closed. However,
the developmental trajectory of robustness during
childhood and adolescence has not been studied so far:
Across both experiments (salt-and-pepper noise as well
as eidolons), overall performance increases as a function
of age. The biggest gain in performance is achieved
between the groups of 4- to 6-year-olds (light orange,
circles) and 7- to 9-year-olds (darker orange, circles).
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Figure 4. Classification accuracy (top 1) and normalized classification accuracy for different age groups and models. Normalized
accuracy shows the change in accuracy relative to the initial accuracy at difficulty level zero of each age group or DNN, respectively.
(a) Results for the salt-and-pepper noise. (b) Results for the eidolon experiment. The dotted lines represent chance level performance
of 6.25% (100% divided by the number of categories, which was 16). Treating single image classification trials as independent
Bernoulli trials, we calculated binomial 95% confidence intervals for all data points using the Wald method (e.g., see Wallis, 2013, and
Appendix C for details). Error bars span between the lower and the upper bound of those confidence intervals. Thus, non-overlapping
error bars between different observers indicate significant differences in classification accuracy (i.e., that the null hypothesis of zero
accuracy difference between the observers is rejected). Additional plots showing the non-binomial standard deviations for the
different age groups can be found in Appendix D.

That being said, across all age groups, there seems to
be only a linear offset when compared to adults (who
have a similar slope): relative to their performance level
at zero noise or distortion, even 4- to 6-year-olds seem
to have acquired essentially adult-like robustness—i.e.,
their relative (normalized) performance under noise is
similar to that of adults (top right panel) or very nearly
so (bottom right panel).

As shown above, already 4- to 6-year-olds display
remarkable levels of object recognition robustness.
However, their overall accuracy, even in the noise-free
case, is substantially lower than those of older children
and adults. Therefore, we ask: Is this difference

either due to a generally weaker ability to recognize
objects—which indicates a qualitative change in object
processing and robustness—or could it be due to a
weak performance on a subset of categories, which in
turn would indicate only a quantitative change in terms
of the number of categories they have already acquired?
In Figure 5, we take a closer look at accuracies across
different classes. We observe highly nonuniform
accuracies: for some classes like airplane, and so on,
4- to 6-year-olds have nearly adult-level accuracy
(Subfigure 5a). However, there are also some classes
where young children perform substantially worse, such
as clock or knife. This overall pattern is confirmed
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Figure 5. Classification accuracy as a function of different classes. (a) The difference (Delta) of class-wise accuracy between 4- to
6-year-olds and adults on undistorted images (averaged over the salt-and-pepper noise and eidolon experiment). For example, while
adults recognized 96.66% of all undistorted clock images, 4- to 6-year-olds only recognized 36.36% correctly—resulting in a Delta of
60.30%. (b) Confusion matrices for 4- to 6-year-olds and adults for undistorted images (noise level = 0.0) and heavily distorted images
(noise level = 0.35) in the salt-and-pepper noise experiment. Rows show the classification decisions of observers, and columns show
the ground truth label of the presented category. Transparency of single squares within a matrix represents response probabilities
(fully transparent = 0%, solid red = 100%). Entries along the negative diagonal represent correct responses; entriesoff the negative
diagonal indicate errors.

when looking at confusion matrices (Subfigure 5b),
which shows that 4- to 6-year-olds maintain high
performance on a number of classes, even for severe
levels of noise (as indicated by high accuracies (red-ish
entries) on the diagonal).11 Confusion matrices can
be considered as a more fine-grained version of the
graphs in Figure 4. In other words, the matrices show
how the class-conditional classification accuracies
of single object categories change as the distortion
increases. The finding that for the 4- to 6-year-olds, the
noise-related accuracy decrease does not occur for all
categories uniformly, indicating that young children’s
weaker overall performance is not due to a generally
weaker ability to recognize objects but rather to a
weak performance on a subset of categories. Even
though 4- to 6-year-olds have not yet acquired robust
representations for the same number of categories as
adults, they appear almost adult-like regarding some
age-appropriate categories they have already acquired.
This finding suggests that the change in robustness
along the developmental trajectory is rather quantitative
(incremental) and not qualitative.

Back-of-the-envelope calculation: Human
robustness does not require seeing billions of
images during lifetime

So far, we have seen that robust object recognition
emerges early in development and is largely in place by
the age of five. After the age of nine, OOD robustness
does not seem to increase substantially. This indirectly
indicates that for humans—quite different than for
DNNS—more data (or experience) does not necessarily
imply better robustness. As an attempt to quantify
this more directly, and to provide a meaningful
comparison with DNNs trained to classify static
images, we approximate the accumulated amount of
visual experience in human observers by estimating the
number of images that those observers are exposed to
during their lifetime. We use this estimation to compare
different age groups with different models.

We estimated the number of images that human
observers are exposed to by calculating the total number
of fixations during lifetime for each age group. During
a fixation, the eyes remain relatively stationary, and
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the majority of visual information is received. We thus
consider fixations as a good proxy of static input images
(e.g., Rucci & Poletti, 2015). To estimate accumulated
fixations, we made two assumptions: a) accumulated
wake time for any given age group and b) fixations
per second for any given age group. Calculating the
former is straightforward: During development, wake
time gradually increases as a function of age. For
example, 0- to 1-year-olds are, on average, awake
for 11.5 hours a day, whereas adults are awake for
16.5 hours (Thorleifsdottir, Björnsson, Benediktsdottir,
Gislason, & Kristbjarnarson, 2002). We took the
mean age of each tested age group and calculated the
total accumulated wake time for this particular age in
seconds. Estimating the number of fixations per second
is more complex: Fixation duration varies to a great
extent (100–2000 ms; e.g., see Young & Sheena, 1975;
Karsh & Breitenbach, 1983) and is heavily dependent on
age and the given visual task (Galley, Betz, & Biniossek,
2015). Thus, as a reference, we chose a task close to
an everyday natural setting (a picture inspection task)
and for which developmental data are available (Galley
et al., 2015). We then calculated fixations per second for
each age group based on the fixation duration measured
for the mean age of this particular age group. Because
there are no available data for adults in the picture
inspection task, we estimated the fixation duration of
adults by fitting a linear regression line. Fixations per
second calculated in this way ranged from 2.56 for 4- to
6-year-olds to 3.42 for adults (mean adult fixation time
of 292 ms; see Table F1 in Appendix F for details).

However, given that visual input does not change
significantly for extended periods of time in everyday
life, one may not want to count each fixation as a
new input image. Furthermore, using head-mounted
cameras, it has been shown that frequency distributions
of objects in toddlers’ input data are extremely right
skewed (Smith, Jayaraman, Clerkin, & Yu, 2018):
Toddlers have only experience with very few objects of
a specific category, but see those objects (images) very
often. It is not clear whether this is just a nonoptimal
consequence of the natural learning environment of
humans or whether the existence of many similar
views of the same object plays an important role in
object name learning and thus in learning robust visual
representations (Clerkin, Hart, Rehg, Yu, & Smith,
2017). To account for these ambiguities, we provide
four different estimates regarding the amount of human
visual input. As a minimum, we assume a new image
every minute, whereas as a maximum, we assume a
new image every single fixation. Additionally, and less
extreme, we propose a lower (new image every eight
seconds) and an upper (new image every single second)
estimate between the bounds set by every minute
and every fixation.12 Furthermore, there are different
choices for counting input images for DNNs. Should
every encountered image (sample size = training dataset

size × number of epochs, i.e., iterations over the entire
training dataset) or the dataset size (number of images
in training dataset) be considered as visual input? It
is unlikely that training on a smaller dataset for an
increased number of epochs yields the same increase in
robustness as training on a larger dataset. In fact, the
evaluated models vary substantially regarding dataset
size (1.28M to 3.6B) and epochs (2 to 90). Thus, we
decided to plot human data against bothmetrics, sample
size as well as dataset size (see Table F2 in Appendix F
for details on the calculation of input images for
DNNs). Figure 6 compares different age groups and
models regarding OOD robustness and number of
input images for DNNs’ sample size (Subfigure 6a) and
dataset size (Subfigure 6b). As a unified measurement
of classification robustness, we calculated the mean
classification accuracy over all moderately and heavily
distorted images (salt-and-pepper noise: noise level 0.2
and 0.35, eidolon: reach levels 8 and 16) for each age
group and all models. One important question we had
to address was whether to calculate OOD robustness in
absolute or relative terms. After careful consideration,
we think that there is no correct solution and that
there are arguments in favor of both possibilities.
One could argue that robustness should be relative
to the performance on original undistorted images.
An observer that, for example, only gets 50% correct
on undistorted images but also gets 50% correct on
OOD images would get an OOD robustness score of
1.0. This result would suggest that there is no decrease
in accuracy for distorted images relative to the initial
accuracy on clean images. To challenge this line of
reasoning, one could object that the worse a classifier
is overall, the better it would do in terms of OOD
robustness if we only looked at relative measures
(all the way to the extreme where random guessing
achieves perfect OOD accuracy). Based on these
considerations, we decided to include both absolute and
relative plots in the present paper. Although we show
the more conservative absolute plots in Figure 6, the
relative plots—suggesting an even more pronounced
pattern—are shown in Appendix F.

It is important to note that our back-of-the-envelope
calculation is meant to provide a rough estimation and
not an exact quantification of the relevant variables.
The reported results and plots vary depending on
the assumptions made (as explained elsewhere in
this article). Furthermore, it could be objected that
human and model visual experiences are fundamentally
different and cannot be compared per se. One could,
for example, argue that while human visual input
is continuous, models are only presented with static
images.13 Additionally, it could be objected that
even if visual input could be matched in terms of
quantity, there would remain relevant differences in
data quality. Whereas models are often trained on
random images from the world wide web, humans
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Figure 6. Mean OOD robustness for different age groups and models as a function of (a) sample size and (b) dataset size on
semi-logarithmic coordinates. For human observers, four different estimates of the amount of visual input are given (indicated by
different line types), resulting in four different trajectories. We suggest that for the comparison regarding sample size, the two most
right trajectories, and regarding dataset size, the two most left trajectories should be considered (bold lines). The circle area for
models reflects the number of parameters optimised during training.

usually actively choose their fixations such that they are
maximally informative (Evans et al., 2011; Callaway,
Rangel, & Griffiths, 2021).14 Nevertheless, despite these
difficulties, we believe that our estimation is reasonable
and provides a valid starting point for an important
discussion on the data efficiency of humans vs. DNNs
with respect to object recognition robustness.

Keeping this in mind, our calculations suggest that
human object recognition robustness is more data
efficient compared with DNN robustness, irrespective
of the choice of metric. For example, focusing on
sample size, we find that the two least data-hungry

models (ResNeXt and VGG-19) have been exposed
to approximately as much input as 4- to 6-year-olds
(notably only looking at the two highest of our image
number estimates) but are 15% to 30% less robust.
The only model comparable with 13- to 15-year-olds
in terms of OOD robustness as a function of sample
size is SWAG (0.642 vs. 0.659). However, even when
counting all fixations as input images—most likely
an overestimation of the human external visual
input—SWAG needs approximately 10 times more
data to achieve human-like OOD robustness (779M
vs. 7.2B). A more plausible comparison is probably
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accomplished by looking at the two more moderate
estimates—a new image every single second (dashdotted
line) or every 8 s (dashed line)—and comparing them
with sample size or dataset size, respectively. Regarding
sample size, we find that all three models achieving
high OOD robustness (BiT-M, SWSL, and SWAG)
need substantially more data than humans to do so.
The same is true if we consider dataset size, except for
BiT-M, which aligns with the human OOD trajectory
(similar OOD robustness of a 6- to 7-year-old and
similar dataset size of a 6- to 7-year-old if every awake
second is equated with a new image).

It may be important to recall that except for VGG-19,
all of the investigated models were chosen since they
were the most robust ResNet-based models for a given
training dataset size according to the model-vs.-human
benchmark (Geirhos et al., 2021). Thus these models
represent some of the current best models in terms
of data-efficient robustness—comparisons with the
many other DNNs would have resulted in even larger
discrepancies between humans and DNNs.

Looking only at the different DNNs, we find that
BiT-M achieves similar robustness to SWSL with a
much smaller dataset (14M vs. 940M). However, this
gap almost vanishes when looking at sample size. This
indicates that the total number of images exposed to
during training (sample size) seems to matter more in
terms of OOD robustness than plain dataset size. This
may be the case because, owing to data augmentation,
images are not exactly the same for every epoch. It has
been shown that common data augmentations (such as
random crop with flip and resize, color distortion, and
Gaussian blur) lead to higher OOD robustness (Perez
& Wang, 2017; Mikołajczyk & Grochowski, 2018;
Shorten & Khoshgoftaar, 2019). Regarding the number
of parameters optimised during training—the area of
the circles in the figure—we do not find any direct link
to OOD robustness.

Different strategies: Big models are not like
children, but children are like small adults

In the previous sections, we have seen comparisons
of overall accuracy and robustness and how this is
related to the amount of visual input. While accuracy
increases with age (i.e., older children successively
categorise more and more images correctly), it remains
unclear whether children just gradually acquire more
categories, or whether they go through a more radical
change of perceptual strategy at some point (at least in
terms of overall behavior, teenagers clearly change a
lot). To this end, we performed two analyses aimed at
understanding how object recognition strategies change
(if at all) during childhood and adolescence. The first
analysis is related to the image cues used for object
recognition (shape or texture), and the second is related
to image-level errors (error consistency).

Texture–shape cue conflict: No evidence of a strategy
change

Geirhos et al. (2019) and Baker, Lu, Erlikhman,
and Kellman (2018) have shown that adults and
ImageNet-trained DNNs have a clear discrepancy in
object recognition strategy. While human adults base
their classification decisions on object shape, DNNs
are much more prone to using texture cues instead. To
determine whether children are more similar to adults
or to DNNs in this regard, we evaluated performance
on texture–shape cue conflict images. These images
contain conflicting shape and texture information
(e.g.,a cat’s shape combined with an elephant’s texture;
example stimuli shown in Figure 3). It may be worth
pointing out that there is no right or wrong answer
in those cases—both the correct texture category and
the correct shape category are considered correct
responses. Instead, we want to understand whether
decisions are consistent with the shape or the texture
category. The results are visualized in Figure 7. The
exact fractions of shape vs. texture biases and the
category wise proportions of texture vs. shape decisions
are shown in Appendix G. Those results clearly show
that irrespective of age, humans have a very strong
shape bias (between approximately 0.88 and 0.97), and
there is no evidence to suggest any change of strategy
during human development in this regard.15 Even
models trained on extremely large datasets, however,
still do not have a shape bias comparable with humans.
In other words, when it comes to using texture or using
shape, big models are not like children, but children are
like small adults.

Error consistency: Distorted input serves as a magnifying
glass for object recognition strategies

In the previous section, we have seen that there does
not appear to be a radical change in perceptual strategy
during childhood when it comes to using texture or
shape cues to identify object categories. Nonetheless, all
of the previously analysed measures are fairly coarse.
Both accuracy and shape bias analyses could potentially
overlook more subtle changes of strategy—if, for
example, adults struggle with specific images that
children find easy, and vice versa, then we would end up
with very similar aggregated decisions (as measured by
accuracy) despite highly different image-level decisions.
Therefore, we here looked at image-level decision
patterns through the lens of error consistency (Geirhos,
Meding, & Wichmann, 2020). Error consistency is
a quantitative analysis for measuring whether two
decision-makers systematically make errors on the exact
same stimuli. Error consistency between two individual
observers is calculated in three steps: First, observed
error overlap is calculated by dividing the total number
of equal responses—in which both observers either
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Figure 7. Shape versus texture biases of different models and age groups. Box plots show the category-dependent distribution of
shape/texture biases (shape bias: high values, texture bias: low values). For example, 4- to 6-year-olds show a shape bias of 0.88,
meaning that of all correct responses, they decided in 88% of cases based on shape cues and in 12% of cases based on texture cues.
The dotted line indicates the maximum possible shape bias (100% shape-based decisions). Shape versus texture biases for individual
categories are shown in Figure G1 in Appendix G.

classified an image correctly or incorrectly—by the
total number of images both observers have evaluated.
Second, because even two completely independent
observers with high accuracy will necessarily agree on
many trials by chance alone, error overlap expected
by chance is calculated (based on the assumption

of binomial observers). Third, the empirically
observed error overlap is compared against the error
overlap expected by chance via Cohen’s κ, which
quantifies the agreement of two observers considering
the possibility of the agreement occurring by
chance.

Figure 8. Distorted input serves as a magnifying glass for object recognition strategies—irrespective of age, children make errors on
many of the same noisy images as adults; at the same time, models make errors on different images as humans. The plot shows error
consistency as measured by Cohen’s kappa (κ) for different distortion levels (columns) split by different within- and between-group
comparisons (rows) for a selection of different observer groups (4–6, 7–9, adults, and DNNs). κ = 0 indicates chance level consistency
(i.e., both observer groups are using independently different strategies), κ > 0 means consistency above chance level (i.e., both
observer groups are using similar strategies), and κ < 0 means inconsistency beyond chance level (i.e., both observer groups use
inverse strategies). Plots are horizontally divided into three subsections: Upper subsection (within-group comparisons), middle
subsection (between-group comparisons humans only), and lower subsection (between-group comparison humans and DNNs).
Colored dots represent error consistency between two single subjects (one of each observer group). Box plots represent the
distribution of error consistencies from subjects of the two given observer groups. Boxes indicate the interquartile range (IQR) from
the first (Q1) to the third quartile (Q3). Whiskers represent the range from Q1 − IQR to Q3 + IQR. While vertical black markers
indicate distribution medians, faint vertical green markers indicate distribution means.
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Here, we used error consistency to compare four
different observer groups (4- to 6-year-olds, 7- to
9-year-olds, adults, and DNNs). We performed all
possible within-group (e.g., 4- to 6-year-olds with
4- to 6-year-olds) and between-group (e.g., 4- to
6-year-olds and DNNs) comparisons.16 In Figure 8,
error consistency is visualized for all difficulty levels of
the salt-and-pepper-noise experiment split by different
within- and between-group comparisons; the (similar)
error consistency plot for the eidolon experiment can be
found in Appendix H.

It may be worth pointing out the central patterns:
First of all, in line with (Geirhos et al., 2020; Geirhos
et al., 2021), human-to-human consistency is generally
high, and although it is highest within the same age
group, it is also well beyond chance in all between-
age-group comparisons. Second, human-to-human
error consistency increases as the task becomes harder
(i.e., with increasing noise level). Third, regarding
comparisons involving DNN models, a very different
pattern emerged. Model-to-model consistency starts
at chance level and does not increase substantially
beyond chance as a function of noise level (highest at
noise level 0.1; mean = 0.18). Furthermore, regardless
of age, model-to-human consistency is at chance level
for noise level zero. And also for distorted images,
model-to-human consistency (mean over all model-to-
human comparisons for distorted images = 0.127) is
far below human-to-human consistency (mean over
all human-to-human between-age-group comparisons
for distorted images = 0.361). Thus, it almost seems
as though distorted input serves as a magnifying
glass for object recognition strategies—irrespective of
age, children make errors on the same noisy images
as adults; at the same time, models make errors on
different images as humans.

Discussion

We investigated the developmental trajectory of core
object recognition robustness to assess whether human
OOD robustness results from training (experience)
on a very large amount of visual input–similar to
state-of-the-art OOD-robust DNNs. To this end, we
collected 23,474 psychophysical trials from 146 children
and 9 adults and compared their OOD performance
against five DNNs trained on datasets of different sizes.
To our knowledge, this is the first study to directly
compare children, adolescents, and different DNNs in
a psychophysical core object recognition task using an
experimental protocol also employed for adults and in
machine learning.17

We find that, first, human OOD robustness develops
very early and is essentially in place by the age of
five. Although there may be a slight increase in
robustness as a function of age, by the time children

reach middle childhood, they have approximately
obtained adult-level robustness (see Figure 4, right
column, normalized accuracy). This finding fits with
neuroscience data showing that brain maturation
relevant for object recognition reaches adult-level
at this point of development (Golarai et al., 2010;
Scherf et al., 2007; Conner et al., 2004; Ben-Shachar
et al., 2007). Furthermore, we find that young children
did not perform uniformly weaker on all categories
(see Figure 5), indicating that the observed overall
improvement in accuracy is due to the acquisition
of new categories rather than to a global change
in representation and information processing (see
Figure 4, left column, accuracy). This allows even
4–6 year-olds to outperform DNNs trained on
standard ImageNet. Second, by estimating the visual
input for human observers at different points during
development, we find that—in contrast to current
DNNs—human OOD robustness requires relatively
little external visual input (see Figure 6).18 This indicates
that in humans, OOD robustness may not be achieved
solely by the sheer quantity of training data alone.
Third, the former two findings are supported by our
observations that all tested age groups employ similar
object recognition strategies as indicated by a similar
shape bias (see Figure 7) and high error consistency
across different age groups and difficulty levels (see
Figure 8).

Taken together, these findings suggest that for both
humans and DNNs, robust visual object recognition is
possible but achieved by different means. While human
robustness seems fairly data-efficient, at least today,
machine robustness is data-hungry.19 In other words,
there are two different systems with the same property,
which came about in different ways—a phenomenon
called convergence in biology (McGhee, 2011). As an
example, consider the ability to fly, which emerged at
least three different times during evolution: in mammals
(e.g., bats), in sauropsida (e.g., birds) and in insects
(e.g., dragonflies). Lonnqvist, Bornet, Doerig, and
Herzog (2021) recently argued that considering DNNs
and humans as different visual species, and adopting
an approach of comparative biology by focusing
on the differences rather than the similarities, is a
promising way to understand visual object recognition.
Accordingly, in what follows, we elaborate on possible
differences between human vision and DNN vision,
which might explain the difference in data efficiency to
solve robust object recognition.20

First, there might be a difference in data quality,
allowing humans to form more robust representations
from limited data. While human data is continuous
and egocentric (Bambach, Crandall, Smith, &
Yu, 2017), this is not the case for standard image
databases. Recent advances in data collection using
head-mounted cameras allow for developmentally
realistic first-person video datasets (Jayaraman, Fausey,
& Smith, 2015; Fausey, Jayaraman, & Smith, 2016;
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Bambach, Crandall, Smith, & Yu, 2018; Sullivan,
Mei, Perfors, Wojcik, & Frank, 2020). Although
studies have shown that models trained with such
biologically plausible datastreams form powerful,
high-level representations (Orhan, Gupta, & Lake,
2020) and achieve good neural predictivity for different
areas across the ventral visual stream (Zhuang et al.,
2021), others find that to match human performance in
object recognition tasks models would need millions
of years of natural visual experience (Orhan, 2021).
A further difference regarding the data quality of
humans versus machines lies in the modality of the
data; while model input is most often unimodal,
human input is multimodal. It has been shown that
the availability of information across different sensory
systems is linked to the robustness of human perception
(e.g., see Ernst & Bülthoff, 2004; Gick & Derrick,
2009; von Kriegstein, 2012; Sumby & Pollack, 1954).
Regarding vision, Berkeley (1709) famously argued
that “touch educates vision.” Affirmatively, a recent
study demonstrated that neural networks trained in a
visual-haptic environment (compared with networks
trained on visual data only) form representations that
are less sensitive to identity-preserving transformations
such as variations in viewpoint and orientation (Jacobs
& Xu, 2019). Taken together, the continuous, egocentric
and multimodal nature of human training data might
explain why current DNNs are not as data efficient as
humans. Accordingly, a limitation of our study is the
lack of systematic variation in the quality of training
data. Perhaps by providing DNNs with high-quality
training data, even current DNN architectures could
achieve OOD robustness with as little data as humans.
Thus, future research should systematically acquire
multimodal datasets of varying quality and evaluate the
trained models on OOD datasets.

Second, humans may rely on different inductive
biases—that is, constraints or assumptions prior to
training (learning)—allowing for more data-efficient
learning. Especially intuitive theories, such as, intuitive
physics, theory of mind, or implicit knowledge about
the causal structure of the world, might lead to efficient
processing of the available data (e.g., see Lake, Ullman,
Tenenbaum, & Gershman, 2017; Marcus, 2020; or
Goyal & Bengio, 2020) for the role of inductive biases
in OOD robustness in general). For example, once
learned that the representation of a particular object
does change based on certain physical conditions (such
as lighting or distance), intuitively knowing that all
objects obey the laws of physics and behave in a causally
predictable way should facilitate object recognition for
other objects which are affected in similar ways. Human
inductive biases are the product of millions of years of
evolution and are built in right from the start (birth).
Thus, to further disentangle the influence of evolution
versus lifetime experience, it would be interesting to
investigate the developmental trajectory during infancy.

In this regard, the present study is limited, however,
because the employed experimental set-up does not
allow testing children younger than four years of age.
We did not test younger children and infants because
this would have required us to employ an experimental
set-up different to what we used to test adolescents
and adults, weakening our comparison. To ensure
consistency (also with respect to the DNN comparison),
we included no children younger than 4 years of age.
However, it is fair to say that 4-year-olds are already
quite old by the standards of developmental research.

Third, an exciting possibility is that humans enlarge
their initial dataset provided through external input
by creatively using already encountered instances to
create new instances during offline states—a concept
similar to what in reinforcement learning is called
experience replay (e.g., see O’Neill, Pleydell-Bouverie,
Dupret, & Csicsvari, 2010; Lin, 1991, 1992; Mnih
et al., 2015). The idea is that, during imagination and
dreaming, stored memories are combined to generate
new training data (e.g., see Deperrois, Petrovici, Senn,
& Jordan, 2022; Hoel, 2021). Thus, in addition to the
external input provided by the sensory system, an
internal generative model provides the visual system
with additional training data. Putting this into context,
one could argue that humans and DNNs might be
similar to the extent that they both rely on large-scale
datasets to solve object recognition robustness, but are,
however, very different in how they attain such large
datasets: Although DNNs are entirely dependent on
external input, humans are somewhat self-sufficient
by producing their own training data from limited
external input. Assuming that this hypothesis about
the emergence of human OOD robustness is true,
the question is whether learning during offline states
could make DNNs as data-efficient as humans. The
present study only compares how much external input
is required to achieve high OOD robustness. Our
results are thus not suited to answer this question.
However, recently, Deperrois et al. (2022) proposed a
model based on generative adversarial networks, which
captures the idea of learning during offline states by
distinguishing between wake states, where external
input is processed, and offline states, where the model is
trained by a generative model either by reconstructing
perturbed images based on latent representations
(similar to simple memory recall as during non-REM
sleep) or by generating new visual sensory input based
on convex combinations of multiple randomly chosen
stored latent representations (similar to the rearranging
of stored episodic patterns during REM sleep).
Experiments with these models show that introducing
such offline states increases robustness and the near
separability of latent representations. Further evidence
for the benefit of learning during offline states comes
from world model–based reinforcement learning. It
has been shown that reinforcement learning agents can
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solve different tasks only by being trained in a latent
space which could be conceptually associated with the
model’s dreams, imagination or hallucinations (e.g., see
Zhu, Zhang, Lee, & Zhang, 2020; Hafner, Lillicrap, Ba,
& Norouzi, 2019; Ha & Schmidhuber, 2018).

The three described differences between humans and
DNNs might explain the difference in data efficiency
found in the present study. However, they are arguably
only a small subset of all differences, which might
account for the differences in data efficiency. What is
clear, however, is that object recognition robustness is
not only solvable by a single approach. In evolution,
there are often many paths to the same feature. Only
by examining the environmental constraints present
during phylogenesis can we understand why a particular
feature emerged. Not being biological systems, DNNs
were not exposed to similar evolutionary pressure
as humans, and thus data efficiency seems not to be
as crucial as for humans. Accordingly, it comes as
no surprise that DNNs are less data efficient than
humans. However, the data efficiency of humans
seems to be a crucial feature of the human visual
system. Thus, to truly understand the robustness of
human vision, we need to model not only the behavior
(OOD robustness) but also the means by which it is
achieved.

Conclusion

Recent improvements in OOD robustness in machine
learning are primarily driven by ever-increasing large
datasets, with models trained on several billion images.
However, humans achieve remarkable OOD robustness
very early in life. Our investigations and calculations
suggest that children learn much from relatively little
data. Children benefit from accumulating experiences
but do not require the same amount of experience
as state-of-the-art neural network models, indicating
that they are achieving OOD robustness by different
means as DNNs. The human visual system appears
highly data efficient, which may be an evolutionary
advantage. It remains an open question what the
sources of this data efficiency are: Is it due to the
accumulation of high-quality data alone? High-quality
data combined with suitable inductive biases and
mechanisms to upcycle data to enlarge the training
dataset during offline states such as dreaming? We
believe that comparing children with adults and DNNs
is a fruitful approach to a better understanding of data
efficiency in humans and to perhaps inspire a healthy
diet for current data-hungry models without sacrificing
their robustness.

Keywords: object recognition, robustness, out-of-
distribution, deep learning, development, generalization,
children, deep neural networks, computer vision
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Footnotes
1At least if the similarity is measured using standard image processing
metrics like the Euclidean distance between, or correlation of, the images.
2It may be possible that large-scale datasets feature (some) images that
are similar to images in OOD test sets. This may be particularly likely
for common distortions like blur or JPEG compression (Hendrycks &
Dietterich, 2019) but considerably less likely for, for example, the eidolon
distortions that we use here, which are specifically designed for research
purposes.
3This is not the case for face-selective regions, which continue to develop
well into adolescence (Grill-Spector et al., 2008).
4Tests used included the Efron Test, Warrington’s Figure-Ground Test,
the Street Completion Test, the Poppelreuter-Ghent Test, a selection of
stimuli from the Birmingham Object Recognition Battery, and a series
of color photographs of objects presented from unusual perspectives or
illuminated in unusual ways.
5Note that most tests were very different from the psychophysical
task we used in this study. The tests most similar to the task used
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here are those administered to assess the ability to recognize the
structural identity of an object even when its projection on the retina is
altered—perceptual categorisation as measured by the Street Completion
Test, the Poppelreuter-Ghent Test, and the identification of color
photographs of objects viewed from unusual perspectives and presented
under unusual lighting conditions. However, all of these tests only consist
of a small number of stimuli (11, 13, or 44 respectively), did not apply
parameterised distortions to real photographs and did not implement a
limited stimulus presentation duration—and thus are not suitable as a
rigorous psychophysical assessment of core object recognition.
6Eidolon: Someone left the images in the rain; that is why some of them
are blurry. Noise: Somebody spilled salt and pepper; that is why some
of them look a bit strange. Cue Conflict: Someone left the images in the
beating sun; that is why some of them stuck together.
7The emblems were sunglasses for the spy, a magnifying glass for the
detective, a microscope for the scientist, and a camera for the safari guide.
8This is true for the noise images; however, this was not entirely true for
the eidolon transformations. As can be seen in Subfigure 3a, the sharpness
decreased a little bit compared with the original images—an unforeseen
result of the eidolon toolbox.
9This is only true for the eidolon and noise experiment. Owing to an
unnoticed cropping error, the image size in the cue conflict experiment was
224 × 224 pixels, corresponding, at a viewing distance of approximately
60 cm, with only 3.5° × 3.5° of visual angle. We do not think that this
small change in absolute size had any influence on the data or results we
report.
10To evaluate the mean grayscale value, images in the cue conflict dataset
were converted to grayscale using skimage.color.rgb2gray.
11Additional confusion matrices can be found in Appendix E.
12Whereas we argue that the maximum—given by a new image every
single fixation—constitutes a naturally occurring constraint, the other
three estimates can be considered reasonable guesses.
13Future studies could consider training models on video data showing
objects of categories also featured in the image dataset and then evaluating
them on static OOD images. Such an approach would arguably lead to a
more adequate comparison with human training data because training
data would be better matched between DNNs and humans. However, this
lies beyond the scope of the present study.
14But see Kümmerer, Theis and Bethge (2014) for an investigation of how
DNNs—trained on object detection tasks—boost saliency prediction.
15Note that we use the term shape bias for the tendency to use object shape
as the crucial feature to identify an object. However, in the developmental
literature, the term shape bias is used to describe the tendency of young
children to use object shape as the crucial property to generalize names to
objects that were not seen before.
16Because not all children responded to all stimuli (see Methods section),
error consistency sometimes was only calculated on a subset of stimuli. In
those cases, we set a minimum constraint of 20 individual stimuli, which
had to be evaluated by both observers. Otherwise, error consistency was
not calculated.
17There is one unpublished investigation comparing children and DNNs
that was presented at the 20th Annual Meeting of the Vision Sciences
Society (Ayzenberg & Lourenco, 2020). They find that young children
(4- to 5-year-olds) display remarkable object recognition abilities and
outperform a VGG-19 and a ResNet-101 model on perturbed images.
Thus, their findings fit our results regarding classification accuracy.
However, the current study extends their findings by covering a more
extensive age range, using naturalistic images with parameterized
distortions and more response categories. Furthermore, we provide a
range of additional analyses such as accuracy delta between children and
adults, confusion matrices, human–model comparison regarding OOD
robustness and input images, texture–shape cue conflict analysis, and error
consistency. Additionally, we compare human data with some of the most
powerful models to date.
18Remember, that these results are based on the assumptions that visual
experience can be meaningfully quantified by static images and that visual
fixations are a good proxy for such static images.
19Assuming that a) from an evolutionary point of view, robustness is
a crucial feature of our visual system (e.g., food detection and predator
avoidance under challenging conditions such as in the dark or during
snow, rain or fog) and that b) it is not feasible to gather enough visual
input during development (even when counting all fixations as new

images humans are not gathering as many images as robust DNNs
are trained on) to achieve robustness by the same means as modern
DNNs (large-scale training), there is a high selection pressure for highly
data-efficient learning. In other words, from an evolutionary point of view,
our back-of-the-envelope calculation shows that human data-efficient
robustness should not be surprising.
20This elaboration is not thought to be exhaustive but rather to address
aspects in which the present study is limited and which we suggest are
promising for future research.
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Appendix A: Gamification

In the Appendices, we provide further experimental
details as well as supplementary plots and details about
the data analysis. Appendix A provides some exemplary
screenshots of the visual details of the user interface.
Details and characteristics of the tested sample of
children and adults are reported in Appendix B. In
Appendix C, the reader can find additional details
regarding the calculation of the accuracy estimations
and the corresponding confidence intervals in Figure 4.

Figure A1. Here we show screenshots at different time-points during the experiment: (a) character selection at the beginning of each
session, (b) response screen with gamified progress-bar, and (c) score display with star- and coin-scores and emblem.
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Following this, we present additional plots, showing the
nonbinomial standard deviations for the different age
groups in Appendix D. A full set of confusion matrices
for 4- to 6-year-olds and adults for both experiments
can be found in Appendix E. Supplementary details
regarding the estimation of human input images and
dataset and sample size of evaluated models are given
in Appendix F, which also features a relative version of
the plots in Figure 6. Further, we provide additional
details about the results of the cue conflict experiment

in Appendix G. Finally, the error consistency plot of
the eidolon experiment can be found in Appendix H.

Appendix B: Demographic
characteristics of participants and
observations

Age within group Trials

Age group Experiment n M SD ♂/♀ n M SD

4- to 6-year-olds Noise 15 5.13 0.64 33/67 1240 62.66 54.96
Eidolon 11 5.27 0.65 64/36 1234 102.83 92.06
Cue-conflict 21 5.29 0.64 62/38 1292 61.52 36.12

7- to 9-year-olds Noise 9 8.11 0.78 47/53 1840 204.44 112.60
Eidolon 14 8.36 0.93 43/57 1708 127.14 61.57
Cue-conflict 11 8.09 0.94 55/45 2020 183.63 118.60

10- to 12-years-olds Noise 15 11 0.85 47/53 1880 125.33 71.9
Eidolon 14 11.14 0.77 43/57 1820 130.00 72.64
Cue-conflict 12 11.08 0.90 50/50 2080 173.33 126.01

13- to 15-years-olds Noise 9 14.22 0.97 44/56 1280 142.22 82.12
Eidolon 7 14.00 1.00 71/29 1700 242.86 76.10
Cue-conflict 8 14.38 0.74 50/50 2260 282.50 107.14

Adults Noise 3 28.33 5.51 33/67 960 320.00 0.00
Eidolon 3 26.00 2.65 67/33 960 320.00 0.00
Cue-conflict 3 29.33 2.89 33/67 1200 400.00 0.00

Table B1. Descriptive statistics of participants and observations split by experiments. Sample size and quantity of observations (n), as
well as mean (M) and standard deviation (SD) for age and trials within observer groups. Gender distribution (♂/♀) is given in
percentages. Note that for adults, trialM equals the total number of trials in the respective experiment and trial SD is zero because
they completed all trials of that particular experiment.
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Appendix C: Additional details on
the calculation of the accuracy
estimations and the corresponding
confidence intervals in Figure 4

Experiment Age group Difficulty Total trials (n) Total successes (X) Accuracy (p̂) CI bounds

Noise 4- to 6-year-olds 0.0 310 219 0.706 p̂± 0.024
0.1 310 174 0.561 p̂± 0.026
0.2 310 180 0.581 p̂± 0.026

→0.35 310 95 0.306 p̂± 0.024

7- to 9-year-olds 0.0 460 417 0.907 p̂± 0.012
0.1 460 325 0.707 p̂± 0.020
0.2 460 304 0.661 p̂± 0.020
0.35 460 209 0.454 p̂± 0.021

10- to 12-year-olds 0.0 470 437 0.930 p̂± 0.011
0.1 470 340 0.723 p̂± 0.019
0.2 470 312 0.664 p̂± 0.020
0.35 470 215 0.457 p̂± 0.021

13- to 15-year-olds 0.0 320 302 0.944 p̂± 0.012
0.1 320 251 0.784 p̂± 0.021
0.2 320 235 0.734 p̂± 0.023
0.35 320 163 0.509 p̂± 0.026

Adults 0.0 240 230 0.958 p̂± 0.012
0.1 240 201 0.838 p̂± 0.022
0.2 240 172 0.717 p̂± 0.027
0.35 240 127 0.529 p̂± 0.030

VGG-19 0.0 80 78 0.975 p̂± 0.016
0.1 80 12 0.150 p̂± 0.037
0.2 80 5 0.063 p̂± 0.025
0.35 80 6 0.075 p̂± 0.027

ResNeXt 0.0 80 79 0.988 p̂± 0.011
0.1 80 56 0.700 p̂± 0.048
0.2 80 23 0.288 p̂± 0.048

→0.35 80 6 0.075 p̂± 0.027

BiT-M 0.0 80 79 0.988 p̂± 0.011
0.1 80 72 0.900 p̂± 0.031
0.2 80 63 0.788 p̂± 0.043
0.35 80 47 0.588 p̂± 0.052

SWSL 0.0 80 80 1.000 p̂± 0.000
0.1 80 72 0.900 p̂± 0.031
0.2 80 57 0.713 p̂± 0.048
0.35 80 38 0.475 p̂± 0.053

SWAG 0.0 80 80 1.000 p̂± 0.000
0.1 80 78 0.975 p̂± 0.016
0.2 80 77 0.963 p̂± 0.020
0.35 80 61 0.763 p̂± 0.045

Eidolon 4- to 6-year-olds 0 302 233 0.772 p̂± 0.022
4 304 194 0.638 p̂± 0.026
8 304 168 0.553 p̂± 0.027

16 304 89 0.293 p̂± 0.024

7- to 9-year-olds 0 445 407 0.915 p̂± 0.012
4 445 384 0.863 p̂± 0.015
8 445 311 0.699 p̂± 0.020

16 445 191 0.429 p̂± 0.022

Table C1. Continued.
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Experiment Age group Difficulty Total trials (n) Total successes (X) Accuracy (p̂) CI bounds

10- to 12-year-olds 0 455 427 0.938 p̂± 0.010
4 455 397 0.873 p̂± 0.014
8 455 323 0.710 p̂± 0.020
16 455 205 0.451 p̂± 0.022

13- to 15-year-olds 0 425 409 0.962 p̂± 0.008
4 425 374 0.880 p̂± 0.014
8 425 337 0.793 p̂± 0.018
16 425 225 0.529 p̂± 0.022

Adults 0 240 237 0.988 p̂± 0.006
4 240 221 0.921 p̂± 0.016
8 240 212 0.883 p̂± 0.019
16 240 131 0.546 p̂± 0.030

VGG-19 0 80 77 0.963 p̂± 0.020
4 80 56 0.700 p̂± 0.048
8 80 24 0.300 p̂± 0.048
16 80 8 0.100 p̂± 0.031

ResNeXt 0 80 79 0.988 p̂± 0.011
4 80 72 0.900 p̂± 0.031
8 80 40 0.500 p̂± 0.053
16 80 21 0.263 p̂± 0.046

BiT-M 0 80 80 1.000 p̂± 0.000
4 80 71 0.888 p̂± 0.033
8 80 40 0.500 p̂± 0.053
16 80 14 0.175 p̂± 0.040

SWSL 0 80 80 1.000 p̂± 0.000
4 80 73 0.913 p̂± 0.029
8 80 49 0.613 p̂± 0.051
16 80 14 0.175 p̂± 0.040

SWAG 0 80 80 1.000 p̂± 0.000
4 80 76 0.950 p̂± 0.023
8 80 55 0.688 p̂± 0.049
16 80 18 0.225 p̂± 0.044

Table C1. Here, we show the exact quantities involved in the calculation of the accuracy measurements and the corresponding
binomial 95-percent confidence intervals in Figure 4. Each psychophysical measurement (trial) that constitutes a data point
(classification accuracy of a given age group or model at a certain distortion level) is treated as an independent Bernoulli trial such
that a “success” corresponds to a correct classification and a “failure” to a misclassification. Accordingly, we assume that the number
of “successes” is a random variable X following a binomial distribution B(n, p), whereby n is the number of observations and p is the
probability of “success”. We estimate p by the sample proportion p̂ = X/n, which is essentially the reported accuracy given by
dividing the number of correctly classified images by the total number of trials. We calculate the binomial 95-percent confidence
intervals for each data point by the following formula (Wald method):

p̂± Z

√
p̂(1 − p̂)

n
,

whereby z is the quantile of a standard normal distribution corresponding to the target error rate α. For a standard two-tailed
95-percent confidence interval, α = 0.025 and thus z = 1.96. To give an example (row indicated by an arrow), consider the
classification accuracy of 4- to 6-year-olds on salt-and-pepper noise images (Difficulty =0.35). Out of 310 collected trials (n),
4–6 year-olds classified 95 images correctly (X). This allows us to calculate the classification accuracy (sample proportion) by dividing
the number of correctly classified images by the total number of trials: p̂ = 95/310 = 0.306. We then use p̂ as an estimator of the
true population accuracy p such that X ∼ B(310, 0.306). According to the above formula, binomial confidence intervals can now be
calculated by

0.31 ± 1.96

√
0.306(1 − 0.306)

310
,

resulting in a 95% confidence interval of [0.282, 0.330] around the mean accuracy of 0.306. Pairwise comparing confidence intervals
between different observers allows for determining whether the two corresponding classification accuracy estimations differ
significantly. For example, the classification accuracy of the ResNeXt model (row indicated by an arrow) for heavily distorted
salt-and-pepper noise images is 0.075 with a confidence interval of [0.048, 0.102]. Since the confidence intervals [0.282, 0.330] and
[0.048, 0.102] do not overlap, we conclude that the classification accuracy differs significantly between 4- to 6-year-olds and the
ResNeXt model.
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Appendix D: Subject-level standard
deviations of the data points in
Figure 4

Figure D1. Exploring the variance: Nonbinomial standard deviation for classification accuracies reported in Figure 4. Here we treated
each subject’s classification accuracy as a single accuracy measurement. Thus, each data point shows the standard deviation for a set
of measurements, which entails the accuracy measurements of all subjects for a particular difficulty level and age group. (a) Results
for the salt-and-pepper noise experiment. (b) The same plot for the eidolon experiment. Across both experiments, we observe a
tendency for the standard deviation to decrease with age. In other words, we observe that for younger children, there are larger
interindividual differences with respect to classification accuracy, independently of the distortion level or type. This indicates that
with advancing age, human observers converge in terms of classification accuracy.
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Appendix E: Confusion matrices

Figure E1. Confusion matrices for 4- to 6-year-olds and adults across all difficulty levels in the salt-and-pepper noise (a) and the
eidolon (b) experiment. Rows show the classification decisions of observers and DNNs, and columns show the ground truth label of
the presented category. Transparency of single squares within a matrix represents response probabilities (fully transparent = 0%,
solid red = 100%). Entries along the negative diagonal represent correct responses; entries off the negative diagonal indicate errors.
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Appendix F: Back-of-the-envelope
calculation

Figure F1. While the plots in Figure 6 show OOD robustness as calculated by the absolute accuracy on moderately and heavily
distorted images across experiments, this figure shows OOD robustness calculated as the accuracy on moderately and heavily
distorted images relative to the accuracy on clean images. Relative OOD robustness for different age groups and models is shown as a
function of (a) sample size and (b) dataset size on semilogarithmic coordinates (x-coordinates of all data points are the same as in
Figure 6. For human observers, four different estimates of the amount of visual input are given (indicated by different line types),
resulting in four different trajectories. We suggest that for the comparison regarding sample size, the two most right trajectories, and
regarding dataset size, the two most left trajectories should be considered (bold lines). The circle area for models reflects the number
of parameters optimised during training. The results are similar to Figure 6, but plotting relative OOD robustness reveals even more
pronounced differences between the data efficiency of human observers and models.
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Age group M age Wake time Fixation duration Fixations per second Min Lower Upper Max

4–6 year-olds 5.13 99.41 390.00 2.56 4.24 10.60 84.83 254.49
7–9 year-olds 8.11 154.16 380.00 2.63 6.76 16.90 135.15 405.44
10–12 year-olds 11.00 211.54 370.00 2.70 9.52 23.80 190.39 571.16
13–15 year-olds 14.22 272.42 350.00 2.86 12.99 32.43 259.43 779.12
Adults 28.33 591.71 292.42 3.42 33.73 84.32 674.55 2023.65

Table F1. Details regarding the estimation of the number of input images for human observers. The estimate of accumulated Wake
time (in millions of seconds) is based on (Thorleifsdottir et al., 2002). Fixation Duration (in milliseconds) refers to the fixation duration
in a picture inspection task (Galley et al., 2015) and is used to calculate Fixations per second. Because there was no available data
regarding the fixation duration of adults in this task, we assumed a linear relationship between age and fixation duration and used the
children’s data to fit a simple regression model to estimate the fixation duration of adults (ŷ = −4.33X + 413.66). Plugging in the
mean age of adults (M = 28) yields a predicted fixation duration of 292.42 for adults. Min (in millions) refers to the minimal assumed
number of input images—a new image every minute. Max (in millions) refers to the maximal possible number of input images—a
new image every single fixation. Lower and Upper (in millions) refers to a—what we believe—reasonable estimate of the lower and
upper bound of input images encountered during lifetime. The lower bound is calculated by scaling the total number of fixations by
24 (new images approximately every eight seconds) and the upper bound by 3 (new images approximately every single second). E.g.,
at the age of five, a child has been awake for approximately 99.41 million seconds; it has made about 254.5 million fixations during
this time (99.41 × 2.56). Based on these numbers, we estimate that a five year-old child has most likely not seen less than 10.6 and
not more than 84.83 million images (total number of fixations during lifetime either scaled down by a factor of 24 or 3).

Model Dataset size Epochs Sample size Parameters

VGG-19 1.28M 74 94.72M 144.00M
ResNeXt 1.28M 90 115.20M 44.00M
BiT-M 14.00M 30 420.00M 928.00M
SWSL 940.00M 1+30* 978.40M 829.00M
SWAG 3.60B 2 7.2B 644.80M

Table F2. Model details regarding all employed models. Dataset size refers to the number of images in the training set and is plotted
on the x-axis in Subfigure 6b. The sample size equals the number of encountered images during training (dataset size × epochs) and is
plotted on the x-axis in Subfigure 6a. *Note that the SWSL model was trained one epoch on 940M images and then 30 epochs on
standard ImageNet (1.28M images)—thus, sample size equals 940M + 30 × 1.28M. Parameters refer to the total number of
parameters optimised during training and is represented by the area of the circles throughout Figure 6.
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Appendix G: Shape-bias

Figure G1. Category wise proportions of texture vs. shape
decisions for different age groups (4–6, 7–9, 10–12, 13–15, and
Adults) and DNNs (VGG-19, ResNext, BiT-M, SWSL, and SWAG).
Only responses corresponding to either the correct texture or
correct shape category are considered.

Observer Shape bias Texture bias

4–6 year-olds 87.55 12.45
7- to 9-year-olds 90.86 9.14
10- to 12-year-olds 93.52 6.48
13- to 15-year-olds 93.18 6.82
Adults 96.72 3.28

VGG-19 (>1M) 7.96 92.04
ResNeXt (>1M) 25.52 74.48
BiT-M (>10M) 57.24 42.76
SWSL (>100M) 55.88 44.12
SWAG (>1,000M) 45.00 65.00

Table G1. Exact fractions of texture vs. shape decisions of
different age groups and DNNs in percent.
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Appendix H: Error consistency

Figure H1. Error consistency as measured by Cohen’s kappa (κ) for different distortion levels (columns) split by different within- and
between-group comparisons (rows) for a selection of different observer groups (4–6, 7–9, adults, and DNNs) in the eidolon
experiment. κ = 0 indicates chance level consistency (i.e., both observer groups are using independently different strategies), κ > 0
means consistency above chance level (i.e., both observer groups are using similar strategies), and κ < 0 means inconsistency beyond
chance level (i.e., both observer groups use inverse strategies). The grid line at κ = 0 is highlighted. Plots are horizontally divided into
three subsections: Upper subsection (within-group comparisons), middle subsection (between-group comparisons humans only), and
lower subsection (between-group comparison of humans and DNNs). Colored dots represent error consistency between two single
subjects (one of each observer group). Box plots represent the distribution of error consistencies from subjects of the two given
observer groups. Boxes indicate the interquartile range (IQR) from the first (Q1) to the third quartile (Q3). While vertical black markers
indicate distribution medians, vertical green markers indicate distribution means. Whiskers represent the range from Q1 − IQR to Q3
+ IQR. Compared groups are indicated by the color of dots and boxes, respectively.
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