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Crowding is the failure to recognize an object due to
surrounding clutter. Our visual crowding survey
measured 13 crowding distances (or “critical spacings”)
twice in each of 50 observers. The survey includes three
eccentricities (0, 5, and 10 deg), four cardinal meridians,
two orientations (radial and tangential), and two fonts
(Sloan and Pelli). The survey also tested foveal acuity,
twice. Remarkably, fitting a two-parameter model—the
well-known Bouma law, where crowding distance grows
linearly with eccentricity—explains 82% of the variance
for all 13 × 50 measured log crowding distances,
cross-validated. An enhanced Bouma law, with factors
for meridian, crowding orientation, target kind, and
observer, explains 94% of the variance, again
cross-validated. These additional factors reveal several
asymmetries, consistent with previous reports, which
can be expressed as crowding-distance ratios: 0.62
horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55
tangential:radial, and 0.78 Sloan-font:Pelli-font. Across
our observers, peripheral crowding is independent of
foveal crowding and acuity. Evaluation of the Bouma
factor, b (the slope of the Bouma law), as a biomarker of
visual health would be easier if there were a way to
compare results across crowding studies that use
different methods. We define a standardized Bouma
factor b′ that corrects for differences from Bouma’s 25
choice alternatives, 75% threshold criterion, and linearly

symmetric flanker placement. For radial crowding on the
right meridian, the standardized Bouma factor b′ is 0.24
for this study, 0.35 for Bouma (1970), and 0.30 for the
geometric mean across five representative modern
studies, including this one, showing good agreement
across labs, including Bouma’s. Simulations, confirmed
by data, show that peeking can skew estimates of
crowding (e.g., greatly decreasing the mean or doubling
the SD of log b). Using gaze tracking to prevent peeking,
individual differences are robust, as evidenced by the
much larger 0.08 SD of log b across observers than the
mere 0.03 test–retest SD of log bmeasured in half an
hour. The ease of measurement of crowding enhances
its promise as a biomarker for dyslexia and visual
health.

Introduction

Crowding is the failure to recognize an object due
to surrounding clutter (Bouma, 1970; Bouma, 1973;
Pelli, Palomares, & Majaj, 2004; Pelli & Tillman,
2008; Strasburger, Harvey, & Rentschler, 1991;
Stuart & Burian, 1962). Crowding has been studied with
several different tasks, including letter identification
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(Bouma, 1970; Flom, Heath, & Takahashi, 1963;
Strasburger et al., 1991), Landolt rings (Flom, Heath,
et al., 1963; Flom, Weymouth, & Kahneman, 1963),
Vernier acuity (Levi, Klein, & Aitsebaomo, 1985;
Malania, Herzog, & Westheimer, 2007; Westheimer
& Hauske, 1975), face recognition (Farzin, Rivera,
& Whitney, 2009; Louie, Bressler, & Whitney, 2007;
Martelli, Majaj, & Pelli, 2005), and orientation
discrimination (Andriessen & Bouma, 1976; Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001; Toet
& Levi, 1992; Westheimer, Shimamura, & McKee,
1976). It is invariant with the size of target and flankers
(Levi & Carney, 2009; Pelli et al., 2004; Pelli, Tillman,
Freeman, Su, Berger, & Majaj, 2007; Strasburger et al.,
1991; Tripathy & Cavanagh, 2002). Crowding is usually
measured by sandwiching the target between two similar
flanking objects, or flankers, and is characterized by the
crowding distance (or “critical spacing”), which is the
center-to-center distance from target to flanker at which
recognition attains a criterion level of performance.
Crowding distance increases linearly with eccentricity
(Bouma, 1970; Kooi, Toet, Tripathy, & Levi, 1994; Levi
& Carney, 2009; Pelli et al., 2004; Toet & Levi, 1992),
and increases with target-flanker similarity (Andriessen
& Bouma, 1976; Chastain, 1982; Kooi et al., 1994; Leat,
Li, & Epp, 1999; Nazir, 1992; Pelli et al., 2004), as well
as the number of distractors (Grainger, Tydgat, & Issele,
2010; Strasburger et al., 1991). Crowding also occurs
for moving stimuli (Bex & Dakin, 2005; Bex, Dakin, &
Simmers, 2003). For a review of the crowding literature,
see Herzog, Sayim, Chicherov, and Manassi (2015),
Levi (2008), Pelli and Tillman (2008), Strasburger
(2020), Strasburger, Rentschler, and Juttner (2011), and
Whitney and Levi (2011). Among the normally sighted,
crowding was first reported in the periphery and, after
some debate, has now been convincingly demonstrated
in the fovea (Atkinson, Pimm-Smith, Evans, Harding,
& Braddick, 1986; Coates, Levi, Touch, & Sabesan,
2018; Flom, Heath, et al., 1963; Liu & Arditi, 2000;
Malania et al., 2007; Pelli et al., 2016; Siderov, Waugh,
& Bedell, 2013; Toet & Levi, 1992).

We are interested in relating psychophysical measures
of crowding to brain physiology, especially cortical
magnification measured by functional magnetic
resonance imaging (fMRI) in areas V1, V2, V3, and
hV4. For this purpose, we tested crowding in 50
observers to characterize the statistics of crowding
within and across individuals. The comparisons with
fMRI are reported separately (Kurzawski, Pelli, &
Winawer, 2021). Here, we report only the psychophysics.
We tested with letters, which, after little or no training,
provide the many possible targets that are needed for
quick testing (Pelli & Robson, 1991). Long term, we are
interested in testing crowding in children (Waugh, Pelli,
Álvaro, & Formankiewicz, 2018) as an early biomarker
for susceptibility to visual problems such as dyslexia.

Crowding distance is highly conserved across object
kind (Kooi et al., 1994; Pelli & Tillman, 2008), which
suggests that letters, vernier, and Gabors might have
similar crowding distances, but Grainger et al. (2010)
reported different crowding distances for letters and
symbols.

Crowding exhibits several striking asymmetries.
Crowding distance measured radially (along a line
passing through the foveal center) is roughly twice
that measured tangentially, the orthogonal orientation
(Greenwood, Szinte, Sayim, & Cavanagh, 2017; Kwon,
Bao, Millin, & Tjan, 2014; Pelli, 2008; Petrov &
Meleshkevich, 2011; Toet & Levi, 1992). Crowding
distance has often been reported to be smaller in the
lower than upper visual field (Fortenbaugh, Silver,
& Robertson, 2015; Greenwood et al., 2017; He,
Cavanagh, & Intriligator, 1996; Petrov & Meleshkevich,
2011) and on the horizontal than vertical midline
(Chung, 2013; Coates, Ludowici, & Chung, 2021; Liu,
Jiang, Sun, & He, 2009; Petrov & Meleshkevich, 2011;
Toet & Levi, 1992; Wallis & Bex, 2012).

Crowding distance is a potentially valuable biomarker
for several reasons. Crowding severely limits what we see
and how fast we read, and it is associated with dyslexia.
There are large individual differences in crowding
distance and correspondingly large physiological
differences in the sizes of relevant areas of visual cortex,
which invite analysis by correlation (Kurzawski et al.,
2021). Here, we measured crowding in 50 observers.
Previous in-person crowding surveys (Grainger et al.,
2010; Greenwood et al., 2017; Petrov & Meleshkevich,
2011; Toet & Levi, 1992) included at most 27 observers.
The only remote crowding survey tested 793 observers
but did not report any asymmetries (Li, Joo, Yeatman,
& Reinecke, 2020). The above cited works used various
kinds of stimuli, including letters of various fonts.
The original reports of the crowding phenomenon
were mostly letter based (Anstis, 1974; Bouma, 1970;
Bouma, 1973; Ehlers, 1936; Ehlers, 1953; Korte, 1923;
Stuart & Burian, 1962). Historical review of crowding
is described elsewhere (Levi, 2008; Pelli et al., 2004;
Strasburger, 2020; Strasburger et al., 2011). Here, we
too use letters, because they do not require training and
provide a large number of stimulus alternatives, which
speeds threshold estimation in laboratory and clinical
testing (Pelli, Robson, & Wilkins, 1988).

Whether crowding can be explained by the neural
computations in any particular cortical location
remains unknown, but several candidate areas have
been suggested: V1 (Millin, Arman, Chung, & Tjan,
2014), V2 (Freeman & Simoncelli, 2011; He et al.,
1996), V3 (Bi, Cai, Zhou, & Fang, 2009; Tyler &
Likova, 2007), hV4 (Burchell, Benson, Zhou, Winawer,
& Pelli, 2019; Liu et al., 2009; Motter, 2006; Zhou,
Benson, Pelli, &Winawer, 2017), and higher-order areas
(Aghdaee, 2005; Louie et al., 2007). The magnitude

Downloaded from intl.iovs.org on 05/06/2024



Journal of Vision (2023) 23(8):6, 1–34 Kurzawski et al. 3

of the BOLD signal in V1 is lower in the presence of
crowding (Millin et al., 2014). Crowding distance is
different for stimuli tuned to stimulate either the parvo-
or magnocellular pathway (Atilgan, Yu, & He, 2020).
Although both crowding and acuity increase linearly
with eccentricity, which might suggest a common
physiological origin, the two lines have very different
intercepts with the eccentricity axis; that is, the E2
value for acuity is more than 5 times larger than the
E2 value for crowding (E2 = 2.72 for acuity; E2 = 0.45
for crowding) (Latham & Whitaker, 1996; Petrov &
Meleshkevich, 2011; Rosenholtz, 2016; Song, Levi, &
Pelli, 2014; Strasburger, 2020). This seems inconsistent
with a common cause. Here, we use our data from 50
observers to study the relationship between acuity and
crowding in the fovea.

In our 50 participants, we measured 13 crowding
distances at three eccentricities (0, 5, and 10 deg) on
all four cardinal meridians. We tested two crowding
orientations (radial and tangential) and two fonts
(Sloan and Pelli). We also measured acuity in the fovea
using the Sloan and Pelli fonts. As far as we know, the
Pelli font is still the only letter font skinny enough to
measure crowding distance in the fovea. Apart from
letters, foveal crowding can be measured with vernier
targets (Malania et al., 2007). We also assessed the
variation in crowding along the four cardinal meridians
in two crowding orientations and across individuals.
Crowding varies twofold across meridians, producing
several asymmetries.

Methods

Measuring crowding

We measured thresholds of many participants,
collecting two datasets with similar methods except for
one important difference. Details about QUEST and
stimulus presentation were similar for both and are
described in the sections below. Here we focus on the
differences.

Method 1: Unmonitored fixation
Threshold was measured without gaze tracking.

Viewing distance was measured before each session,
and no chin rest or forehead support was provided.
The participant identified the target by pressing
that letter in the keyboard. Participants were naive
to the task and received no advance training. In
each block, crowding distance was measured at two
randomly interleaved target locations, which were
horizontally or vertically symmetric about the fixation
cross. This unmonitored-fixation dataset includes one

radial crowding distance on each of the four cardinal
meridians with the Sloan font for 100 participants.

Method 2: Awaited fixation
Each trial began only when the participant had

continuously fixated within ±1.5 deg of the crosshair
for 250 ms, and we only saved trials in which gaze
remained within ±1.5 deg of the crosshair center until
stimulus offset. The experimenter was present during
data acquisition. Viewing distance was measured at the
beginning of each session and maintained by use of a
chinrest with forehead support. Participants identified
the target by using a mouse to click on one of the
letters displayed on the response screen. For each
participant, data collection began after a total of 10
correct trials. Crowding distance was measured at four
randomly interleaved target locations symmetric about
the fixation cross, one on each cardinal meridian. We
acquired two thresholds at each location to estimate
test-retest reliability. This awaited-fixation dataset
includes two radial crowding distances on each of the
four cardinal meridians with the Sloan font for 50
participants.

Comparison of methods
Comparing results obtained with the two methods

at ±5 deg on the horizontal midline revealed large
differences in the mean and distribution of the Bouma
factor (Figure 1). (In this paper, “log” is the logarithm
base 10.) Using unmonitored fixation, geometric
mean b was 0.12, with a 0.31 standard deviation (SD)
of log b. Using awaited fixation, geometric mean b
was higher (0.20), with a lower SD of log b (0.18).
The awaited-fixation histogram (red) is compact.
The unmonitored fixation histogram (green) is much
broader, extending to much lower values of b. Our
interpretation of the broader histogram and lower
geometric mean b in unmonitored fixation is that
observers occasionally “peek”—that is, fixate near an
anticipated location of the target instead of the fixation
cross as instructed. Indeed, at the end of the Results
section, we present a quantitative peeking model
showing that peeking reduces geometric mean b and
broadens its distribution, consistent with the observed
results.

This paper focuses on the awaited-fixation data,
which can be downloaded from the Center for Open
Science (https://osf.io/83p6u/).

Crowding dataset

Data were acquired using CriticalSpacing.m software
(Pelli et al., 2016) with QUEST (Watson & Pelli, 1983),
allowing for reliable and relatively fast measurement
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Figure 1. Histograms of the Bouma factor estimated by two
methods with two possible target locations. Each histogram
shows the Bouma factor b at ±5 deg eccentricity along the
horizontal midline. For awaited fixation, we used only data from
the first session of the experiment. The geometric mean b is
indicated by a dark vertical line capped by a number.
Unmonitored fixation gave a 0.12 geometric mean b with 0.31
SD of log b. Awaited fixation gave a higher 0.20 geometric mean
b with a lower 0.18 SD of log b (see Table 3). The Results section
reports a 0.78:1 right:left advantage. Note that mixing data
from the two locations (−5 left and +5 deg right) makes the
combined histogram slightly broader than that for either
location. The 0.78:1 b ratio corresponds to a −0.107 log b
difference. If we suppose that mixing log b estimates from the
two locations is equivalent to taking all of the data from the
right location and adding +0.107 to a random half of the log b
estimates, then mixing the two locations increases the variance
by +0.0025, which is only 8% of the measured variance of log b
for awaited fixation, and only 3% for unmonitored fixation.

of crowding distance. Our crowding database consists
of measurements of crowding distance with the Sloan
font (with radial and tangential flankers) and with the
Pelli font (radial flankers) in 50 observers. With the
Sloan font, we measured crowding at eight different
peripheral locations in the visual field: two eccentricities
(5 and 10 deg) along the four cardinal meridians (upper,
lower, left, and right). Sloan tangential crowding was
measured only at ±5 deg eccentricity on the horizontal
midline. With the Pelli font, we measured crowding at
the fovea and at ±5 deg on the horizontal midline. The
Sloan font acuity size is too big to allow measuring
foveal crowding distance in adults. The Pelli font was
specially designed for measuring foveal crowding
distance (Pelli et al., 2016). We also measured acuity
in the fovea. A spatial map of the testing is shown
below (see Figure 4 in the Results section). We also
tested 10 observers at 20 and 30 deg eccentricity with
radial flankers (only one session; see Figure 9 for the
plotted results). To estimate test–retest reliability of
our measurements, we used two sessions to measure
each threshold twice. Sessions were scheduled at least a
day apart over a maximum of 5 days apart. We report

our results as the Bouma factor b (slope of crowding
distance vs. eccentricity) estimated from Equation
10, to minimize error in fitting log ŝ. Here, crowding
distance ŝ is the required center-to-center spacing (in
deg) for 70% correct report of the middle letter in a
triplet.

Participants

Table 1 describes our main dataset, and Figure 4 (in
the Results section) plots its spatial coverage of the
visual field. The study tested 50 observers (mean age =
23 years), mostly New York University undergraduate
students. Each observer had normal or corrected-
to-normal vision. All experiments were conducted
in accordance with the tenets of the Declaration of
Helsinki and were approved by New York University’s
ethics committee on activities involving human
observers. In all analyses, except the test–retest section,
we average the first- and second-session thresholds.
The peeking-model section in the Results section refers
to these “awaited-fixation” peripheral measurements
on 50 participants and compares them to separate
“unmonitored-fixation” peripheral measurements on
100 participants.

Apparatus

Each testing session was completed on an iMac
(Apple, Cupertino, CA) with a 27-inch external
monitor. The observer viewed a 27-inch 5K monitor
(27MD5KL-B; LG, Seoul, South Korea), with a screen
resolution of 5120 × 2880 and a white background
with luminance of 275 cd/m2. The white background
never changed throughout the experiment; the black
crosshair and letters were drawn on it. The observer
viewed the screen binocularly at one of several different
viewing distances. The software required a special
keypress by the experimenter at the beginning of every
block with a new observer or a new viewing distance
to affirm that the new viewing distance (eye to screen)
was correct as measured with a tape measure and that
the screen center was orthogonal to the observer’s line
of sight. To measure crowding and acuity in the fovea,
the viewing distance was 200 cm. For ±5 and ±10 deg
eccentricity the distance was 40 cm, and for ±20 and
±30 deg eccentricity it was 20 cm. The long viewing
distance gives good rendering of small stimuli; the short
viewing distance results in a wide angular subtense of
the display, which allows presentation of peripheral
targets on either side of a central fixation. Stimuli were
rendered using CriticalSpacing.m software (Pelli et al.,
2016) implemented in MATLAB 2021 (MathWorks,
Natick, MA) using the Psychtoolbox (Brainard,
1997; Pelli, 1997). Every Sloan letter was at least 8
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Measure Font Crowding orientation
Radial eccentricity

(deg)
Cardinal
meridians

Thresholds per observer
(each measured twice) Gaze tracking

Crowding Sloan Radial 5, 10 All 8 Yes
Crowding Sloan Tangential 5 Right, left 2 Yes
Crowding Pelli Radial 5 Right, left 2 Yes
Crowding Pelli Horizontal 0 — 2 No
Acuity Sloan — 0 — 2 No

Table 1. Data summary. In the periphery, we measured crowding distance radially and tangentially with the Sloan font. With the Pelli
font, we measured crowding both in the fovea and periphery. We also measured foveal acuity with the Sloan font. Each threshold was
measured once in two sessions separated by at least 24 hours. For peripheral thresholds, we used gaze tracking to guarantee fixation
within ±1.5 deg of the crosshair center. Foveal crowding requires a long viewwing distance which makes gaze tracking impractical, so
participants were merely instructed to fixate the center of the crosshair. We suppose good fixation of the central crosshair because
the participants expected a foveal target. N = 50.

pixels wide, and every Pelli digit was at least 4 pixels
wide.

Stimuli and procedure

To measure acuity, we showed one letter. To measure
crowding, we showed a trigram of three letters or
digits. For each trial, the three letters or digits were
drawn randomly, without replacement, from the nine
letters (DHKNORSVZ) or digits (123456789) available.
Letters and digits were rendered as black in the Sloan or
Pelli font and presented on a uniform white background
(Pelli et al., 2016; Sloan, Rowland, & Altman, 1952). We
omitted the C in the Sloan font because it is too easily
confused with the O (Elliott, Whitaker, & Bonette,
1990). For crowding, each trigram was arranged either
radially or tangentially. Each testing session included
several blocks and was about an hour long. Most blocks
measured four thresholds, interleaved, usually four
crowding thresholds on the four cardinal meridians
at the same radial eccentricity. For the Pelli font and
tangential crowding, we measured two thresholds at
symmetric locations about fixation along the horizontal
midline. To minimize the temptation to look away
from fixation toward an expected target location, we
randomly interleaved conditions measuring threshold
at the same radial eccentricity at two or four symmetric
locations around fixation. A sample stimulus sequence
appears in Figure 2A. A central crosshair (the fixation
mark) was displayed until the observer pressed a key to
initiate the trial. Then, after 250 ms of correct fixation,
the letter trigram appeared on the screen for 150 ms
and the computer waited for the observer to identify
the middle stimulus letter using a mouse to click on a
letter in a row of all the possible letters on the response
screen. Observers were instructed to return their eyes
to fixation before clicking their response. A correct
response was acknowledged with a brief beep. The
computer then waited indefinitely for the observer to

fixate within 1.5 deg of the crosshair for 250 ms and
then immediately presented the stimulus for the next
trial. If the observer failed to fixate for 250 ms within a
10-second window, the software asked for recalibration
of the gaze tracker.

Measuring crowding distance

Crowding distance was estimated using the Pelli et
al. (2016) procedure. In this paper, letter “size” is the
width of the letter’s bounding box. Letter spacing was
controlled by QUEST. Letter spacing is proportional to
letter size with a fixed ratio of 1.4:1. We set the Weibull
function guessing rate parameter γ to the reciprocal of
the number of characters in the test alphabet for that
font, usually nine. We set the “finger error” probability
δ to 1% to help QUEST cope with an occasional
reporting mistake. We set the Weibull function steepness
parameter β to 2.3, based on fits to two observers’
psychometric data for radial crowding. At the end of
each block, QUEST estimated the threshold (crowding
distance in deg) (Figure 2B). To measure acuity, we
followed a similar procedure, except that the target
was presented without flankers. Threshold was defined
as the letter spacing (crowding distance, in deg) or
letter size (acuity, in deg) that achieved 70% correct
identification, using QUEST to control the stimulus
parameters trial by trial and make the final estimate.

Each threshold measurement was based on 35 trials
(one condition). A block consisted of all of the trials in
however many conditions were randomly interleaved
(e.g., 4 × 35 = 140 trials to measure the threshold at
four meridians). Each condition measured the threshold
for one meridian. The interleaving kept the observer
uncertain as to which location was being tested on each
trial. We did this to minimize the urge to “peek” away
from fixation. On a crowding trial, until the target and
flankers appeared, there was nothing about the display
that distinguished which of the interleaved conditions
that trial belonged to.
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Figure 2. Stimulus and procedure. (A) The display sequence for a peripheral trial and part of the next. While gazing at the crosshair,
which is always present, the observer presses the space bar, which begins the first trial. The target is presented once the observer had
continuously fixated within 1.5 deg of the crosshair center for 250 ms. Stimulus presentation is accompanied by a low-pitched purr.
Then the observer identifies the target by using a mouse to click on one letter out of all possible letters that appear above the fixation
on the response screen. If the response was correct, the observer hears a brief beep acknowledging correctness and silence
otherwise, then the computer again waits for 250 ms of fixation within 1.5 deg of the crosshair center. The four conditions (one for
each meridian) are randomly interleaved, so the observer does not know which location comes next. (B) A QUEST staircase. The
staircase sequence of spacings tested on 35 successive trials of one condition (+5 deg eccentricity), under control of QUEST. On each
trial, the letter size was a fraction 1/1.4 of the spacing. QUEST picks the most informative spacing to test on each trial to minimize
variance of its final threshold estimate. Finally, after 35 trials, QUEST estimated the crowding distance (i.e., spacing to achieve 70%
correct). Notice that the testing quickly homed in on threshold.

Gaze tracking

We used gaze-contingent display to guarantee
fixation while measuring all peripheral thresholds.
We used an EyeLink 1000 eye tracker (SR Research,
Ottawa, ON, Canada) with a 1000-Hz sampling rate.
To allow short viewing distance (40 cm) we used the
EyeLink Tower mount with a 25-mm lens mounted
on the EyeLink camera. Each trial presented the
stimulus when gaze had been within 1.5 deg of the
crosshair center (the fixation mark) for 250 ms. If,
during the stimulus presentation, gaze deviated more
than 1.5 deg from the crosshair center, then the trial
was not saved, the fixation cross turned red (to alert
the participant), and the trial was repeated with a
fresh letter trigram. Thus, each threshold estimate was
based on 35 trials with fixation within 1.5 deg of the
crosshair center. The foveal thresholds demanded a
long 200-cm viewing distance that was incompatible
with our gaze tracking set-up, so they were measured
without gaze tracking, but fixation is generally
good when the participant knows that the target is
foveal.

Model fitting

It is generally found that the SD of repeated
measurements of threshold spacing s is roughly
proportional to the mean spacing, but the SD of
log spacing S is independent of mean spacing.
Therefore, our fitting minimizes the root-mean-square
(RMS) error in log spacing S = log10s. The fitting is
nonlinear (using the MATLAB fmincon function)
because we minimize error in S, whereas each model
is linear in s, not S. We estimated the participant,
meridional, crowding orientation, and font factors
by solving several models (see model equations in
Table 4).

Our fitting minimizes the RMS error in predicting
the log crowding distances, which is equivalent to
minimizing the summed square error (SSE):

SSE =
∑
i

(
Si − Ŝi

)2
(1)

where Si is the i-th log crowding distance, and Ŝi is
the i-th predicted log crowding distance. The variance
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explained by each model is

R2 = 1 −
∑
i

(
Si − Ŝi

)2
/

∑
i

(
Si − S̄

)2 (2)

where S̄ = meani Si is the mean log crowding distance.

Model comparison

An F test was used for pairwise model comparison.
The model with fewer parameters is referred to as
“simple,” and the model with more parameters is
referred to as “full.” After calculating the sum of
squared errors SSEsimple and SSEfull for each model
(Equation 1), we calculated the F-statistic:

F =
(
SSEsimple − SSEfull

)
/(nfull − nsimple)

SSEfull/(N − nfull )
(3)

where nfull is the number of parameters in the full
model, nsimple is the number of parameters in the simple
model, and N is the number of observations. The p
value is estimated using the F distribution. A p value
less than 0.05 indicates that the model with more
parameters provides a significantly better explanation
of the data.

Cross validation

First, we divided the thresholds into six random
subsets of equal size. In each cross-validation step,
one subset of data was retained as the validation set
for testing the model, and the remaining subsets were
used as training data. Each subset was chosen only
once for testing. We repeated leave-one-out testing six
times to obtain the full dataset. Variance explained R2

is calculated by Equation 2.

Standardized Bouma factor can be compared
across studies

To facilitate comparison across studies and the
cooperative evaluation of the Bouma factor as a
biomarker of visual health, we define the standardized
Bouma factor b′ as the slope of crowding distance
versus radial eccentricity multiplied by a correction
factor that accounts for methodological differences
from Bouma’s number of choices (25), threshold
criterion (75% correct), and linear spacing (vs. log).

Table 2 computes the correction factors needed to
compare the Bouma factor b across studies that used
various numbers of response choices (e.g., nine Sloan
letters or two orientations of a tumbling T), various
threshold criteria (e.g., 70% or 75% correct), and linear
or log flanker spacing. Including the present one, we

know of five studies that have compared crowding
distance across meridians. We have taken Bouma (1970)
as the standard for this standardized way of reporting
the strength of crowding.

The log-threshold shift �S is illustrated in Figure 3B.
Using the Coates et al. (2021) reanalysis of Bouma’s
(1970) data, we estimated the Bouma factor for a 75%
threshold criterion applied to Bouma’s (1970) results
(see the Bouma factor paragraph in the Discussion
section).

Proportion correct
To account for the different number of choices and

the threshold criterion, we assumed that, with accurate
fixation, the proportion correct P is a Weibull function
of log spacing S:

P (S) = γ + (1 − γ )
[
1 − exp

(
−10β(S−�)

)]
(4)

with a threshold parameter �, where γ is the guessing
rate (the reciprocal of the number of target choices,
which is 1/25 = 0.04 in Bouma’s 1970 results), and
β is the steepness parameter, which we set to 2.3,
based on fitting psychometric functions to hundreds
of trials at several spacings by two experienced
observers. Figure 3A shows this psychometric function
for six studies, taking the guessing rate γ to be the
reciprocal of the number of choices n, and using our
own estimate of the steepness parameter β = 2.3.

“True” proportion correct
To accommodate various numbers of choices n, and

thus guessing rates γ = 1/n, we corrected for guessing:

P∗ = (P − γ )/(1 − γ ) (5)

This is a popular transformation of psychometric data,
usually justified by assuming that the guessing rate
can be modeled as an independent process. Because
it discounts false alarms, the corrected hit rate is
referred to as the “true hit rate.” That makes sense
for a yes/no task, but not for an identification task.
Here we proceed regardless and compute the “true”
proportion correct, because, with this Weibull function
(Equation 4), correction for guessing (Equation 5)
removes all dependence on γ . Applying correction for
guessing to any given threshold criterion P gives us the
corresponding “true” proportion correct criterion P* to
apply after correction for guessing. Similarly, applying
correction for guessing to the psychometric function
(Equation 4) gives us the “true” proportion correct:

P∗ (S) = 1 − exp
(
−10β(S−�)

)
(6)

The inverse of Equation 6 is

S = invP∗ (P∗) = � + log [−ln (1 − P∗)] /β (7)
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Figure 3. Effect of guessing rate and criterion on threshold log crowding distance S. (A) Proportion correct (Equation 4) of the six
studies, with threshold parameter � set to zero, showing the effects of the number of response choices n (sets lower asymptote
γ = 1/n) and the threshold criterion (height of each colored dot). (B) Psychometric function corrected for guessing (Equation 6) for
the same studies. Each study’s threshold criterion P* is represented by a horizontal line. For each study, a vertical line reads off the log
threshold spacing S at its threshold criterion P*. Results from Bouma (1970) are used with the Andriessen and Bouma (1976) 75%
threshold criterion. Table 2 computes the difference between each study’s threshold and Bouma’s. To avoid occlusion, the Toet and
Levi and Bouma lines in this panel were offset by +0.02 horizontally and vertically.

Figure 3B plots the “true” proportion correct
(Equation 6 with β = 2.3 and � = 0), the same function
for all studies, and, for each study, a vertical line reads
off the log threshold spacing S at its threshold criterion
P*.

Relative to the Bouma standard
Thus, the number of choices of a study and the

threshold criterion increase its log threshold by �S
relative to the Bouma standard:

�S = invP∗ (P∗) − invP∗ (
P∗
Bouma

)
(8)

= log (− ln (1 − P∗)) /β
− log(− ln

(
1 − P∗

Bouma
)
)/β (9)

where β = 2.3, and P* and P∗
Bouma are the “true”

proportion correct threshold criteria computed
by Equation 5 from the study’s criterion P and Bouma’s
PBouma = 0.75 (Andriessen & Bouma, 1976).

Log-symmetric spacing of flankers

Since the study by Bouma (1970), most crowding
studies have measured crowding distance as the

center-to-center spacing between the target and each
of two flankers on opposite sides of the target that
yields a criterion level of performance. When crowding
is measured in the radial orientation, the Bouma
law tells us that crowding distance increases linearly
with eccentricity. Several studies have documented
that, when flankers are arranged symmetrically about
the target on a radial line from fixation, the outer
flanker has much more effect (Banks, Bachrach, &
Larson, 1977; Bex & Dakin, 2005; Estes, Allmeyer,
& Reder, 1976; Krumhansl, 1977). This is to be
expected because crowding distance grows with
eccentricity and the outer flanker is more eccentric.
In fact, crowding distance on the cortical surface (in
mm)—the product of crowding distance (in deg) and
cortical magnification (in mm/deg)—is conserved
across eccentricity (for eccentricities above 5 deg)
because psychophysical crowding distance scales with
eccentricity (Bouma, 1970; Kooi et al., 1994; Levi &
Carney, 2009; Pelli et al., 2004; Toet & Levi, 1992).
Given the logarithmic cortical mapping of the visual
field (Fischer, 1973), when measuring radial crowding
we space the trigram so that the log eccentricity of
the target is midway between the log eccentricities of
the flankers and report the inner spacing. This raises
the question of how to compare crowding distances
among experiments that have spaced the flankers
linearly versus logarithmically. Given the Bouma law
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(Equation 10 below), supposing that crowding distance
depends primarily on the flanker-to-flanker distance
and only negligibly on the target position between
them, we show in the Supplementary Materials (“Effect
of symmetric placement of flankers with regard to
either linear or log eccentricity”) that the crowding
distance is expected to be 1.18 times larger when
measured with linearly spaced flankers than with
log-spaced flankers. To ease comparison across studies,
the correction factors in Table 2 include this effect
of log versus linear spacing on the estimated Bouma
factor.

Might attention help explain differences in the
reported Bouma factor?

Attention reduces many perceptual thresholds
(Carrasco, 2011). Many researchers have assessed the
effects of attention on crowding, but they have yet to
reach a consensus. Several have found an attentional
benefit in crowding tasks (Bacigalupo & Luck, 2015;
Kewan-Khalayly, Migo, & Yashar, 2022), including
reductions of crowding distance (Yeshurun & Rashal,
2010), but others have not found such effects (Scolari,
Kohnen, Barton, & Awh, 2007; Strasburger, 2005;
Strasburger & Malania, 2013). All of our peripheral
crowding thresholds were measured with either twofold
or fourfold uncertainty about target location, and we
supposed that attention was distributed among the
possible target locations. It is possible that attentional
bias contributed to some of the Bouma factor
asymmetries.

Data from other studies

Data were extracted from Figure 6 of Toet and Levi
(1992) using WebPlotDigitizer (Rohatgi, 2022). Data
were extracted from Figure 7 of Grainger et al. (2010).
Data from Greenwood et al. (2017, Supplementary
Figure S1) and Coates et al. (2021, Figure 10) were
received as personal communications from the authors.
Data from Bouma (1970) were used by means of the
recent reanalysis by Coates et al. (2021).

Statistical analysis

Statistics of the log Bouma factor B = log b were
assessed using an analysis of variance (ANOVA)
with B as the dependent variable. Two sample
comparisons were made with the Wilcoxon rank-sum
test. We report Pearson’s r correlation coefficient for
test–retest reliability and correlations of crowding
distance.

Results

Crowding and acuity

As shown in the map of testing (Figure 4), radial
crowding thresholds were measured in 50 adults at
nine visual field locations. Using the Sloan font, radial
crowding thresholds were measured at the four cardinal
meridians at 5 and 10 deg eccentricity, and tangential
crowding thresholds were measured on the left and
right meridians at 5 deg eccentricity. Using the Pelli
font, the horizontal crowding threshold was measured
in the fovea and on the right and left meridians at 5 deg
eccentricity. Foveal acuity was also measured with the
Sloan font.

Test–retest reliability of the visual threshold

Measurement reliability was assessed by measuring
each threshold twice, at least 1 and not more than 5 days
apart. Crowding thresholds are converted to Bouma
factors b (see Equation 10 below). Foveal crowding
and acuity are presented as crowding distance (deg)
and acuity as letter size (deg). Figure 5 plots a scatter
diagram of estimates from first versus second session
for each combination of font and task. The second
session improved over the first only for the Pelli font
(Figure 5B), with a ratio of geometric mean retest:retest
= 0.88. This training benefit was much smaller (and
insignificant) for the Sloan font (0.95), presumably
because Sloan is more similar (than Pelli) to familiar
fonts and thus benefits less from learning. In general,
each threshold is derived from a QUEST staircase with
35 trials, which takes about 3.5 minutes and has very
good reproducibility. The analyses performed in the
following sections are based on the geometric mean
threshold across both sessions.

Analysis of variance

Table 3 presents an ANOVA analysis of the radial
Sloan Bouma factors (also plotted in Figure 5A).
The 0.18 SD for radial Sloan with two meridians
(with awaited fixation) in Figure 1 corresponds to the
0.17 total SD with four meridians (also with awaited
fixation) in Table 3. The 0.08 SD for Sloan radial
crowding in Figure 8 corresponds to the 0.08 SD across
observers in Table 3. Meridian contributed the most
variance.

Bouma law explained 82% of variance

Bouma (1970) discovered the linear relationship
between crowding distance and eccentricity. He initially

Downloaded from intl.iovs.org on 05/06/2024
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Figure 4. Map of testing. Each panel title indicates the font and threshold task. The number of observers tested is indicated in the
lower left. The +, −, and o symbols indicate testing of crowding with radial (−) or radial and tangential (+) flankers, and testing of
acuity (o). Typical stimuli appear in the lower right of each panel. Beyond the main dataset described here, Figure 9 shows additional
results from 10 observers at 20 and 30 deg eccentricity.

Figure 5. Test–retest reliability of threshold estimates. Estimates of Pearson’s r correlation coefficient, SD, retest:test ratio, and R2 are
based on log Bouma factor, horizontal spacing, or acuity named at the top of each panel. For peripheral crowding (A–C) each
measurement is represented by a triangle pointing toward the tested meridian. The gray line represents equality. In each panel, SD
represents the mean across observers of the SD of test and retest of log b. “Ratio” is the geometric mean across participants of each
participant’s ratio of retest b over test b. The p value is from a two-sample t-test between test and retest and r is Pearson’s correlation
coefficient.
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Factor Degrees of freedom Variance SD p

Meridian 3 0.0143 0.1195 <0.01
Observer 49 0.0059 0.0770 <0.01
Test–retest 1 0.0001 0.0109 0.016
Error 346 0.0071 0.0843 —
Total 399 0.0274 0.1656 —

Table 3. Analysis of variance. We computed the contribution of
each parameter to overall variance. Meridian contributed the
most (SD = 0.12) and test–retest contributed the least (SD =
0.01). The degrees of freedom values are the number of
parameters minus 1. Error is the remaining variance not
accounted for by a linear combination of meridian, observer,
and test–retest. There were no significant pairwise interactions
among meridian, test–retest, and observer (all p > 0.5).

reported a slope of 0.5, which he later revised to 0.4
(Andriessen & Bouma, 1976). The Bouma law is

ŝ = (ϕ0 + ϕ) b (10)
where ŝ is crowding distance (in deg), ϕ is radial
eccentricity (in deg), and ϕ0 (in deg) and b
(dimensionless) are positive fitted constants (Bouma,
1970; Rosen, Chakravarthi, & Pelli, 2014). The
dimensionless slope b is the Bouma factor. The
horizontal intercept is –ϕ0, and the vertical intercept is
ϕ0b (Liu & Arditi, 2000; Strasburger et al., 2011; Toet &
Levi, 1992).

Crowding is one of several tasks for which the
threshold increases linearly with radial eccentricity,
and such a task can be summarized by an E2 value
that is the eccentricity at which threshold reaches twice
its foveal value (Levi et al., 1985). In the Bouma law
(Equation 10), E2 = ϕ0.

Our large database of visual crowding thresholds
(Table 1) is very well fit (R2 = 82.45%) by the
two-parameter linear Bouma law (Equation 10),
showing that most of variation in crowding in our
data is explained by eccentricity. Just two degrees of
freedom, b and ϕ0, suffice to fit all 650 data points (13
thresholds measured in each of 50 observers). The
estimated slope b was 0.23, just over half of Bouma’s
0.4. (We return to this apparent discrepancy below in
Discussion: Standardized Bouma factor.) Our database
consists of measurements at five locations with radial
and tangential flankers and two fonts. To capture the
effect of these parameters on the Bouma factor we
propose an extended version of the Bouma law.

Extended Bouma law explains 94% of variance

Crowding depends on more than just eccentricity.
Crowding varies substantially across meridians (right,
left, up, or down), crowding orientation (radial or

tangential), target kind (e.g., letters or symbols) and
across individuals. Here, we enhance the Bouma
law by including these other variables. One by one,
the extensions add model parameters for meridian,
crowding orientation, target kind, and observer. The
models and the variance that they account for are
summarized in Table 4.

Meridian
Factor bθ , which allows b to depend on the meridian

θ (right, left, up, or down):
ŝ = ϕ0b+ ϕbθ (11)

where b from Equation 10 now represents the geometric
mean of bθ , b = 10ˆ(mean(log bθ)). Note that the
meridian is undefined at the fovea.

Crowding orientation
Factor fdir depends on crowding orientation (radial

or tangential):
ŝ = (ϕ0b+ ϕbθ ) fdir (12)

Target kind
Factor tkind depends on target kind (e.g., Pelli or

Sloan font):
ŝ = (ϕ0b+ ϕbθ ) fdirtkind (13)

Observer
Finally, factor oi depends on the observer:

ŝ = (ϕ0b+ ϕbθ ) fdirtkindoi (14)
where

∏
i oi = 1. Adding factors to the original Bouma

law accounts for more variance. Going from the
simplest to the most enhanced model (Equations 10
and 14) increases explained variance from 82% to 94%
(Table 4). Model performance is improved by adding the
meridian factor (R2 = 89%) and crowding orientation
(R2 = 93%). Adding the target-kind factor explains
hardly any more variance, with an increase from
92.54% to 92.63%. Finally, the most enhanced model,
with an observer factor, explains 94% of variance.
The models are all cross-validated, so the additional
variance explained is not a necessary consequence of
the increase in parameters. If the additional parameters
were overfitting the training data, then we would find
less variance accounted for in the left-out test data.

Because model parameters can be added in any
order to form the final model (Equation 14), we asked
how much each parameter contributes to the total
explained variance. For each parameter, we began with
the full model, removed that parameter, calculated the
explained variance for the reduced model, and assessed
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Model Equation R2 R RMSE No. of parameters Deg. of f.

Bouma law ŝ = (ϕ0 + ϕ)b (Equation 10) 82.45% 0.90 4.80 2 2
× Meridional factor ŝ = ϕ0b + ϕbθ (Equation 11) 88.96% 0.94 3.80 6 5
× Crowding orientation ŝ = (ϕ0b + ϕbθ ) fdir (Equation 12) 92.54% 0.96 3.13 8 6
× Target kind factor ŝ = (ϕ0b + ϕbθ ) fdir tkind (Equation 13) 92.63% 0.96 3.11 10 7
× Observer factor ŝ = (ϕ0b + ϕbθ ) fdir tkind oi (Equation 14) 93.86% 0.97 2.84 60 57

Table 4. How well the Bouma law and its extensions predict crowding distance. We began with the Bouma law (Equation 10).
Successive models then tried to account for more variance by adding factors that depend on the meridian, crowding orientation, font,
and observer. Each row gives a significantly better fit than the row above (assessed with F-test using Equation 3). The R2 (Equation 2)
column shows cross-validated variance accounted for in predicting log crowding distance over the whole visual field (13 thresholds
per observer). Pearson’s R shows the correlation between acquired and predicted data, and RMSE is the root-mean-square error.

Removed factor Equation Decrease in R2

Meridian ŝ = (ϕ0 + ϕ) b fdir tkind oi 4.5%
Crowding orientation ŝ = (ϕ0b + ϕbθ ) tkind oi 3.1%
Observer ŝ = (ϕ0b + ϕbθ ) fdir tkind 1.4%
Target kind ŝ = (ϕ0b + ϕbθ ) fdir oi 0.2%

Table 5. Parameter contribution to the most extended Bouma
law. We measured the contribution of each parameter to the
full model.

the drop in explained variance. We found that, after
eccentricity, meridian contributed the most (4.5%) and
target kind contributed the least (0.2%). (Note that
most of our data were collected with just one crowding

orientation and one font; we expect target kind to
explain more variance in studies that more evenly use
the two crowding orientations or several fonts, or other
target kinds.) Results are shown in Table 5.

Because the enhanced model accounts for more
variance than the original Bouma law, we looked in the
data for systematic effects of these parameters. Figure 6
plots each set of model parameters after normalizing
by the geometric mean of that set, where a set is the
four meridians, two crowding orientations, two fonts,
or 50 observers. Asymmetry within each factor is
discussed in the next section. Except for target kind,
each of the factors (meridian, crowding orientation,
and observer) accounts for a roughly twofold variation
in the Bouma factor (dashed horizontal lines in
Figure 6).

Figure 6. How several parameters scale Bouma factor. To reveal the effect of each parameter (horizontal axis) each set of model
parameters was normalized by the geometric mean of that set. The vertical axis plots the model’s estimates of that parameter.
Because the model is multiplicative, the final Bouma factor is proportional to the product of all of the parameters. We found a similar
variation of the Bouma factor with meridian, crowding orientation, and observer. Target kind had the least effect, but that is partly
because nearly all of our data are with one font.
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Figure 7. Bouma factor versus meridian. (A) Bouma law estimates for radial crowding with the Sloan font estimated using Equation 10.
Each point represents the mean across participants, and error bars represent 95% confidence intervals. (B) Bouma factor versus
meridian. (C) Individual participant data plotted for the vertical (dark red) and horizontal midline (orange).

Radial Bouma factor varies twofold across
meridians

Most of the thresholds in our dataset are for the
Sloan font with radial flankers. Using these data,
we explored the variation of the Bouma factor
across meridians. We estimated the Bouma factor by
fitting Equation 10 for each participant and meridian
independently (Figure 7A). The Bouma factor was
smallest along the right meridian and highest along
the upper meridian (Figure 7B). The Bouma factor
was 0.184 right, 0.237 left, 0.300 lower, and 0.381
upper meridian, with an overall geometric mean
of 0.27.

Meridional asymmetries
We found three asymmetries. As a reporting

convention, we refer to the “advantage” of a smaller
Bouma factor. (1) Along the vertical midline, there is a
0.79 lower:upper advantage. (2) Along the horizontal
midline, there is a 0.78 right:left advantage. (3) Finally,
there is a 0.62 horizontal:vertical advantage (based on
the geometric mean of the Bouma factors from the
right and left meridians vs. upper and lower meridians).
All reported asymmetries were highly consistent across
participants (Figure 7C). ANOVA revealed a significant
effect of meridian, F(3,196)= 92.76, p< 0.001, and post
hoc analysis showed that the Bouma estimates at each
meridian were significantly different from each other
(all p < 0.001, corrected for multiple comparisons). For
each meridian, we also estimated the eccentricity ϕ0 at
which the crowding distance reached twice its foveal
value; ϕ0 was 0.37 ± 0.02 deg for the right, 0.29 ± 0.02
deg for the left, 0.22 ± 0.01 deg for the lower, and 0.17
± 0.01 deg for the upper meridians.

Tangential Bouma factor is roughly half of radial

Unlike radial crowding, tangential crowding was
the same in the left and right meridians according to
the Wilcoxon rank sum test (z = −0.73, p = 0.49).
The standardized (see section on corrected Bouma
factor below) tangential Bouma factor was small:
0.13 on the right and 0.14 on the left meridian. The
tangential:radial ratio was 0.60 in the right meridian
and 0.50 in the left.

Bouma factor varies with target kind

Pelli and Tillman (2008) highlighted the remarkable
degree to which crowding distance is conserved across
stimulus kind, but later work shows that crowding
distance does differ substantially between some target
kinds (e.g., letters vs. symbols) (Grainger et al., 2010).
Along the horizontal midline, the standardized Bouma
factor for the Sloan font was 0.239 on the right and
0.308 on the left, and it was slightly higher for the Pelli
font: 0.325 on the right and 0.377 on the left. Overall,
there was a 0.78 Sloan:Pelli ratio of standardized
Bouma factors (geometric mean of the ratio taken
at each meridian), and the difference between fonts
was statistically significant (z = 3.58, p < 0.001). The
model performance is slightly improved by adding
the target-kind factor (Equation 13). This factor
contributed little to the overall variance explained by
the model because most of the data came from trials
with the same target kind (Sloan letters). So, even
though excluding target kind as a factor from the model
caused inaccurate predictions for the Pelli font, the
reduction in variance explained was negligible because
nearly all of the dataset is based on the Sloan font.
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Figure 8. Histograms of crowding and acuity. Histograms of (A) radial Sloan, radial Pelli, and tangential Sloan Bouma factor
(dimensionless), and radial Sloan negative intercept ϕ0 (in deg), foveal horizontal crowding distance s (in deg), and foveal acuity a (in
deg). To estimate individual differences, we used all data (i.e., in the periphery: 16 radial crowding thresholds with Sloan font, four
radial crowding thresholds with Pelli font, and four tangential crowding thresholds with Sloan font; in the fovea: two horizontal
crowding thresholds with Pelli font and two size thresholds with Sloan font). (B) Retest versus test of the Bouma factor b for radial
Sloan, one point per observer. Separately for test and retest, the b estimate is the geometric mean across four meridians of the
Bouma factor fitted to the observer’s spacing thresholds at 5 and 10 deg. Listed parameters are calculated as in Figure 5.

We anticipate that the target-kind factor will account
for more variance in datasets that focus on comparing
target kinds.

Bouma factor varies twofold across observers

The Bouma factor varied with meridian, crowding
orientation, and target kind. Here, in this section,
we quantify differences among observers. First, we
estimated how well the Bouma law fits individual
participant data. Fitting Equation 10 to the right
meridian data for each participant resulted in, on
average, 97% explained variance, confirming that
individual crowding data are well described by the
linear model. Next, for each observer, we fit the whole
model to estimate the observer’s overall Bouma factor
(Figure 8). We also reported individual differences in
acuity. Individual differences are characterized by the
SD of the log of the threshold. The radial Bouma
factor for the Sloan font varied approximately twofold
across observers (SD of log b = 0.08). The variance was
very similar for tangential flankers (SD of log b = 0.08)
and larger for the Pelli font (SD of log b = 0.11). Foveal

acuity a and foveal crowding distance s also varied
twofold. For crowding, the ϕ0 values also varied twofold
and ranged between 0.17 and 0.37 (Song et al., 2014).
We also report the SD between test and retest for the
log Bouma factor estimated with radial flankers and the
Sloan font (Figure 8B). For each observer, we fit one log
Bouma factor for the test session and one log Bouma
factor for the retest. Differences across observers were
much larger than those of test–retest. The 0.08 SD of
the log Bouma factor across observers is nearly three
times larger than the 0.03 SD of test and retest, showing
that one such Bouma factor estimate, measured in half
an hour, is enough to distinguish individual differences.
That measurement of log b consists of eight thresholds
(2 eccentricities × 4 meridians) and 280 trials (8
thresholds × 35 trials/threshold).

Supralinearity: Bouma factor increases with
eccentricity

Bouma discovered the linear increase of crowding
distance with eccentricity. We have seen that this linear
equation fits our data well. However, seeing that we
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Figure 9. Supralinearity: Crowding distance slope grows with eccentricity. (A) Radial Bouma factor at 5 versus 10 deg eccentricity for
the Sloan font. Each color shows data on a different meridian. Data are plotted for all 50 participants included in the main study.
(B) Log crowding distance for 10 participants is plotted against eccentricity out to 30 deg. The linear Bouma law is green, and the
quadratic Bouma law is orange. We used log coordinates because the fit minimizes the error in log coordinates. Enhancing the Bouma
law from linear to quadratic increases the explained variance from 90% to 95%. (C) Same fits replotted in linear coordinates. The
nonlinear growth of crowding distance with eccentricity is not an artifact of perspective transformation: The computation of target
angular size and eccentricity was done correctly using the arc tangent function. Equation 10 fit with RMS error = 0.20, b = 0.30, and
ϕ0 = 0.20. Equation 15 fit with RMS error = 0.16, b = 0.15, ϕ0 = 0.43, and c = 0.06.

had 50 participants and data at 0 to 10 deg, a reviewer
suggested that we examine how well Bouma factor is
conserved across eccentricity. To estimate the Bouma
factor, we fit Equation 10 for the Sloan font with radial
flankers to our data at 0 deg plus either 5 or 10 deg
(Figure 9A). On average, the Bouma factor was 1.4
higher at 10 than 5 deg eccentricity. This effect was
statistically significant, F(1,398) = 42.3, p < 0.001,
and there was no interaction between eccentricity and
meridian, F(3,392) = 0.513, p = 0.674. This shows that
the growth of crowding distance with eccentricity is
actually more than linear. Indeed, the Coates et al.
(2021) reanalysis of Bouma (1970) shows a similar
supralinearity. Motivated by this finding, we invited
10 observers already in the main dataset (0, 5, and 10
deg) to also measure crowding distance at 20 and 30 deg
eccentricity.

When fitting data, there is a long tradition of using
the shortest polynomial that fits adequately. Bouma
(1970) initially suggested proportionality, with 1 degree
of freedom. Measurements of nonzero crowding
distance at 0 deg eccentricity led to a linear equation
with 2 degrees of freedom. Seeing curvature in our
data from 10 observers from 0 to 30 deg, we enhanced
Bouma law from linear to quadratic (3 degrees of
freedom) to fit the data. Equation 15 adds a quadratic
term to Equation 7 to allow the slope to grow with
eccentricity. Replacing Equation 10 by 15 increased
the degrees of freedom from 2 to 3 and increased the
explained variance from 90% to 95% (Figures 9B, 9C):

ŝ = (
ϕ0 + ϕ + cϕ2) b (15)

where ŝ is predicted crowding distance (in deg), ϕ is
radial eccentricity (in deg), and ϕ0 (in deg), b, and c are
degrees of freedom.

Correlation of log crowding distance across
visual field, crowding orientation, and target
kind

We explored the pattern of correlations of log
crowding distance for visual field locations, crowding
orientations, and target kinds. These correlations are
shown in Figure 10A, where each cell shows Pearson’s r
between two measurements. Rows are sorted so that the
average correlation decreases from top to bottom. We
found that log crowding distance measured on the right
meridian at 10 deg eccentricity with the Sloan font and
radial flankers yielded the highest average correlation
with other log crowding distances (r = 0.39 with all, and
r = 0.41 when fovea is excluded). Foveal log crowding
distance measured with Pelli font yielded the smallest
average correlation with the rest of the log crowding
distances.

To summarize how correlation depends on stimulus
properties we estimated the average correlation across
measurements when one, two, or three stimulus
properties (eccentricity, meridian, target kind, crowding
orientation) differ (Figure 10B). The test–retest
correlation of 0.54 is plotted at zero changes. The
average correlation drops to 0.30 with one change, to
0.25 with two changes, and to 0.18 with three changes.
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Figure 10. Correlations of log crowding distance. (A) Pair-wise correlations between crowding distances for various conditions
(Table 1). Rows are sorted so that the average correlation decreases from top to bottom. (B) Average correlation as a function of the
number of stimulus property differences in radial eccentricity, meridian, crowding orientation, and target kind. For example,
comparing two eccentricities is a one-parameter difference.

We also estimated the average correlation at the same
stimulus location, and we only varied font and crowding
orientation (right or left meridian at 5 deg). We found
an average correlation (across two changes) of r = 0.54.
On the other hand, when we changed the location only
and kept the stimulus properties (e.g., radial flankers,
Sloan font, 5 deg) we obtained a much lower correlation
of r = 0.32. This indicates that, when correlating
crowding distances, location matters more than any
other stimulus property.

Correlation of Bouma factor b and intercept ϕ0

The Bouma law has 2 degrees of freedom, ϕ0 and b,
which are anticorrelated, r = −0.51 (geometric mean
across meridians).

Standardized Bouma factor and its asymmetries
across different studies

Visual field asymmetries can help identify the neural
origin of perceptual phenomena (Afraz, Pashkam, &
Cavanagh, 2010; Himmelberg, Winawer, & Carrasco,

2023). We compared our estimates of Bouma factor
to all the previous studies that measured crowding
asymmetry.

Estimating slope from just one point
The Bouma law has 2 degrees of freedom, the

slope b and the negative intercept ϕ0. Estimating two
parameters requires two measurements, but many
crowding studies report crowding distance at only one
eccentricity. In the complete case, we have thresholds s0
and s at eccentricities 0 and ϕ, and we use the definition
of the Bouma factor b as the slope b = (s – s0)/(ϕ – 0).
In the incomplete case, we have only threshold s at
eccentricity ϕ. One might try to estimate the missing
foveal threshold s0 or negative intercept ϕ0, but the
simplest thing to do is to neglect ϕ0 (pretend it is zero),
and estimate b̂ = s/ϕ. The estimate has fractional error
∈ = (b̂− b)/b = ϕ0/ϕ. Thus, neglecting ϕ0, possibly
because the foveal threshold is unknown, leads to
a fractional error ϕ0/ϕ. The studies in Table 2 used
eccentricities ϕ ≥ 2 deg. Our measurements estimated
ϕ0 = 0.24 deg. Thus, at 2 deg or beyond, the fractional
error in the estimated Bouma factor will be at most
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0.24/2 = 12%. The fractional error drops to 5% at 5 deg
and to 2% at 10 deg.

Each Bouma factor was multiplied by a correction
factor to account for criterion differences and log
versus linear flanker spacing (Table 2). Correction
provides a standardized Bouma factor b′ for each study
(Table 6). Figure 11 compares crowding across studies
by plotting the standardized Bouma factor vs. meridian.

Effects of meridian and target kind
Two rows in Table 6 (1, Sloan letter; 4, tumbling

clock) report radial standardized Bouma factors for
all four cardinal meridians. Figure 11A shows that,
although the standardized Bouma factor was higher
for the clock than for Sloan by a factor of 1.3 (ratio
of means for the right meridian 0.313/0.239 = 1.3),
the two curves are otherwise similar, showing the
same dependence on meridian. The 1.3:1 difference
is not an artifact of number of choices or threshold
criterion (Table 2). Both studies used gaze tracking
to exclude fixation errors, so the difference is not a
consequence of bad fixation. Thus, this seems to be
a real 1.3:1 difference in standardized Bouma factor
between target kinds, precisely what the target-kind
factor tkind is meant to account for in Equation 13.
The tumbling clocks may be more like each other than
the nine Sloan letters are and therefore produce larger
crowding distance. Almost all other studies (rows 3, 6,
9, and 10) cluster above the Sloan font and show the
same dependence on meridian. In general, we found
that Courier New letters (row 8) produced the smallest
radial standardized Bouma factor (0.23 on the right
meridian) and tumbling Ts (row 10) produced the

largest radial standardized Bouma factor (0.39 on the
right meridian).

Tangential crowding
We also compared standardized Bouma factors

estimated with tangential flankers across studies
(Figure 11B). The tangential Bouma factor did
not vary as much as radial, especially in the left
meridian (Figure 11B, rows 2, 5, and 7). Radial
crowding estimates, even with the same stimuli, showed
more variation in the standardized Bouma factor
(Figure 11A, rows 1, 4, and 6). Although our data
did not show any difference between right and left
meridians (row 2), data extracted from Greenwood et
al. (2017) do show a slight right:left advantage (row 5).

Meridional asymmetries
Table 7 and Figure 12 report three Bouma factor

asymmetries (horizontal:vertical, right:left, and,
lower:upper Bouma factor ratios) for our and four
selected studies. On average, the Bouma factor
asymmetry is larger radially than tangentially. Radially,
there is an advantage of horizontal over vertical
meridian, right over left meridian, and lower over
upper meridian in every study. The horizontal:vertical
advantage seems to be insensitive to object kind as
the estimates are clustered around ratios of 0.6 to 0.7.
Similarly, the lower visual field advantage is close to 0.8
for both studies that tested at this location (rows 1 and
4). The right:left asymmetry is the most variable. The
right:left ratio is smallest for Courier New letters (row
8) and largest for clocks (row 4).

Figure 11. Standardized Bouma factor versus meridian for various studies and target kinds. Each numbered point corresponds to a
numbered row of data in Table 6. (A) Comparison of radial-crowding studies and (B) tangential-crowding studies. Both panels plot
standardized Bouma factor versus meridian. The legend shows the crowding stimuli. The white-on-black B symbol is the standardized
Bouma factor estimated from Bouma (1970) data at 4 deg eccentricity with a 75% threshold criterion, with help from the reanalysis in
Coates et al. (2021).
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Figure 12. Plot of the three asymmetries, expressed as the ratio of Bouma factors. Each numbered point corresponds to a numbered
row of data in Table 7. The horizontal dashed line at 1 represents no asymmetry. Each point is a ratio between Bouma factors. As
in Figure 11, the legend shows examples of the objects that were used to measure crowding distance.

What does peripheral crowding distance add to
foveal acuity?

Not predicted by acuity
Any evaluation of the usefulness of crowding

distance as a biomarker must assess what crowding
tells us about the observer over and above what can be
gleaned from foveal acuity, which is routinely measured
in all optometric and ophthalmic exams. For our 50
observers, foveal acuity failed to predict peripheral
crowding, with an insignificant average correlation of
0.04 (Figure 13, gray peripheral circles). More generally,

Figure 13. Foveal acuity and crowding fail to predict peripheral
crowding. Correlation of foveal acuity (grey) and foveal
crowding (red) with crowding everywhere. The central circles
are test–retest for acuity (black) and crowding (red).

both acuity and crowding measured in the fovea fail to
predict peripheral crowding (average foveal–peripheral
crowding correlation is an insignificant correlation
of 0.15) (Figure 13, red circles). Within the fovea, we
do find a significant correlation between acuity and
crowding (r = 0.64). (It may be mere coincidence, since
they are different measures made with different fonts,
but we were struck by the near equality of geo. mean
foveal size and spacing thresholds: 0.07 deg acuity and
0.08 deg crowding distance, Figure 8). Thus, foveal
acuity predicts foveal crowding but not peripheral
crowding. If peripheral crowding is of interest (e.g.,
as a possible limit to reading speed), then it should be
measured, as it is not predicted by foveal acuity.

Foveal acuity and crowding
Our procedure measures threshold by covarying size

and spacing. Because we found that foveal acuity and
crowding are correlated, one might ask whether the
correlation is due to the measured crowding threshold
being contaminated by acuity limits. For five observers,
using the same CriticalSpacing.m software, Pelli et
al. (2016) measured foveal spacing threshold with the
Pelli font with several spacing:size ratios and, for each
observer, confirmed that all of the measured thresholds
corresponded to one spacing at different sizes. For those
five normally sighted observers, this showed that the
procedure measured a crowding threshold, not acuity.

The peeking-observer model

Without gaze tracker
We wondered how the Bouma factor estimate

depends on fixation accuracy and we wondered
if fixation accuracy might explain the difference
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between the two Bouma factor histograms in Figure 1.
Peripheral identification is difficult, so, in ordinary
life, we typically first foveate a peripheral target that
we need to identify. Despite instructing observers to
fixate on the central cross, we know that gaze could be
elsewhere during the target presentation. The observer
is torn between the desire to follow the instruction
to fixate the cross and the natural impulse to fixate
an anticipated peripheral target location. When the
target location is randomly one of several peripheral
locations, the participant’s anticipation of location
is often wrong. We modeled the participant’s gaze
position by two distributions, one without and one
with peeking. First, for the no-peeking awaited-fixation
distribution, we used the measured eye position in the
awaited-fixation dataset, in which the participant’s
gaze was within 1.5 deg of the crosshair center for 250
ms immediately before target presentation, and we
discarded trials in which gaze was more than 1.5 deg
from the crosshair center during target presentation.
The awaited-fixation gaze-position distribution was
compact and roughly centered on the fixation crosshair.
Second, we considered peeking toward a possible target
location. We supposed that the participant peeks on
a fraction p of the trials, and that the peeking eye
movement travels only a fraction k of the distance from
the crosshair to the possible target location, with a
Gaussian error (0.5 deg SD in x and in y). The peeking
distribution has a mode corresponding to each possible
target location, but at a fraction k of the possible target
eccentricity. Gaze position is randomly sampled from
the peeking distribution on a proportion p of trials and
otherwise from the awaited-fixation distribution.

In the spirit of the Bouma law, our peeking-observer
model assumes that the probability of identifying the
target is given by a psychometric function:

P (r) = 1 − 0.5 exp

(
−

(
r

btrue

)β
)

(16)

that depends solely on the ratio r of target-flanker
spacing to actual target eccentricity, where btrue is the
true Bouma factor and steepness β is 2.3. For simplicity,
the model omits threshold criterion and finger-error
probability delta. Bouma factor b is estimated by 35
trials of QUEST, assuming the true psychometric
function, with a prior guess = 0.11 of r and an assumed
SD = 2 of log r.

Awaited-fixation distribution
The awaited-fixation distribution was 3500 actual

gaze positions at stimulus onset (35 trials × 50
participants × 2 sessions) measured with an EyeLink
eye tracker in our awaited-fixation dataset. Recall that
the stimulus was presented only when the gaze had been
within 1.5 deg of the crosshair center for 250 ms.

Peeking distribution
We considered one, two, and four possible target

locations (Figure 14A). First, the target was always
presented at one location (right meridian at 5 deg).
Second, the target was randomly presented at ±5 deg
on the horizontal midline. Third, the target was at 5 deg
radial eccentricity on a random one of the four cardinal
meridians (right, left, upper, lower). When participants
“peek” at a possible target location, depending on the
number of possible locations, they have a 100%, 50%,
or 25% chance of selecting the target location. Target
and gaze position together define the actual target
eccentricity.

Nominal eccentricity of the target is relative to the
crosshair. Actual eccentricity of the target is relative to
gaze position when the target is presented. Peeking near
the target position will reduce the actual eccentricity
to practically zero, whereas peeking another target
location could result in an actual eccentricity greater
than nominal. Figure 14B shows the actual target
eccentricities calculated based on the four distributions
of gaze position in Figure 14A.

The nominal radial eccentricity of the target is always
5 deg, so we simulated an observer with a threshold
spacing of 1.5 deg by using the Weibull psychometric
function that is assumed by QUEST during threshold
estimation (with β = 2.30, δ = 0.01, γ = 0.11). Thus,
our model assumes a true Bouma factor of 1.5/5 = 0.3.
The point of this exercise is to evaluate how various
methods estimate Bouma factor. We simulated a block
of 35 trials using QUEST to estimate the 70% correct
spacing threshold from which we could calculate
Bouma factor. We repeated this many times to obtain
a histogram of estimated Bouma factors (Figure 14C)
for awaited fixation (gray) and peeking (colored)
distributions.

The modeling shows that the geometric mean
estimated Bouma factor b was lowest (0.03) for peeking
with one possible location and highest with four (0.37),
given a true Bouma factor b = 0.30. With no peeking
(p = 0), gaze position was from the awaited-fixation
distribution, and the model estimate of Bouma factor
was 0.28, very close to the true value of 0.30. The SD of
log Bouma factor b was highest (0.40) with two possible
locations and lowest (0.22) with four.

The error (deviation from the assumed Bouma factor
b = 0.3; see arrow on the vertical axis in Figure 14D)
in estimating Bouma factor grows with the proportion
p and fraction k of peeking (Figure 14D). Observing
that the error of the estimated Bouma factor
grows proportionally with k and that its SD grows
proportionally with k2 (note the parabolic shape
in Figure 14E), we produced new plots (Figures
14F, 14G) showing that the geometric mean of b is
roughly linear with p × k and the SD of log b is roughly
linear with

√
p × k.
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Figure 14. The peeking model. (A) Scatter diagrams of the distribution of gaze position for each number of possible target locations.
The gray histogram was measured by the EyeLink eye tracker in the awaited-fixation dataset. The green, blue, and red distributions of
gaze position were synthesized assuming a full peek fraction k = 1 and a Gaussian (SD = 0.5 in x and 0.5 deg in y) centered at each
possible target location (B) Four histograms showing “actual” radial eccentricity of the target based on the distributions in (A).
“Actual” indicates that target eccentricity is computed relative to gaze position rather than the crosshair that the observer was asked
to fixate. (C) Five thousand Bouma factors estimated using QUEST (35 trials) where each trial used the actual eccentricity.
(D) Geometric mean of the Bouma factor for each simulated case plotted versus fraction k. The arrow on the vertical axis indicates the
true value of the Bouma factor that we assumed (0.3), and the arrow on the horizontal axis shows nominal eccentricity (5 deg). (E) SD

→
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←
of Bouma factor versus fraction k. Color saturation indicates the percentage of trials in which observers’ peeked (see inset color bar).
(F, G) Same as (D) and (E); however, the geometric mean of the Bouma factor and its SD are plotted versus the combination of
peeking probability p with fraction k.

Figure 15. Comparing the peeking model with data. We used log-likelihood estimation to find the model parameter values that best
fit our data, where the higher the likelihood, the better the fit. (A, B) Log-likelihood is plotted versus estimated Bouma factor b. A
vertical gray line indicates the best fit. Plots elsewhere use the best-fitting value. Brightness indicates the product p × k. (C, D) Boot-
strapped model estimates. For each model we bootstrapped the fit (n = 100) by randomly removing 25% of the data at each iteration
and fitting the model on the remaining data. Each histogram contains 100 best-fitted parameters from each iteration. The p × k
confidence intervals were calculated after bootstrapping the p × k parameter (n = 1000) and averaging 10 random samples at each
iteration. This created a normal distribution and allowed for the calculation of confidence intervals. (E, F) Comparison of the
histograms of best-fitting simulated and acquired data. The solid vertical line indicates the geometric mean. For unmonitored fixation,
the geometric mean of Bouma factor b was 0.13 for the simulated data and 0.12 for the human data. The SD of log Bouma factor was
0.32 for the simulated data and 0.31 for the human data. For awaited fixation, the geometric mean of Bouma factor was 0.27 for the
simulated data and 0.27 for the human data. The SD of log Bouma factor was 0.21 for the simulated data and 0.19 for the human
data. Note that the red distribution in (D) is different from the red distribution in Figure 1. Here, we plotted data from all four
meridians. Data plotted in Figure 1 are extracted from just the right and left meridians.
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Given p, k, and the true Bouma factor, our
peeking-observer model predicts the estimated Bouma
factor b. We estimated p and k by fitting the model
using maximum likelihood optimization. The higher
the log-likelihood, the better the fit. We wanted
to determine how often (p) and how far (k) the
observer peeks and the estimated Bouma factor b.
In Figures 15A and 15B, the scatter and breadth of the
log-likelihood distribution result in a broad confidence
interval for the product p × k. To estimate the error
of the fit, we bootstrapped it by removing 25% of
data at each iteration (n = 100). For unmonitored
fixation (Figure 15A), the bootstrapped parameters
were consistent with high peeking (0.5 < p × k ≤
1) and rejected no peeking (p × k = 0). For awaited
fixation (Figure 15B), the bootstrapped parameters
were consistent with low peeking (p × k < 0.5)
and rejected high peeking (p × k = 1). For each
dataset, Figures 15E and 15F show that the human
data are well matched by the simulated histogram.
The two geometric means of b match, as do the
standard deviations of log b. Our peeking model of eye
position and crowding predicts the estimated Bouma
factor in both cases, showing that the unmonitored
fixation results are well fit by high peeking, and the
awaited fixation results are well fit by low peeking. One
simple model of eye position and crowding fits all our
data.

It is our impression that as observers gain experience
with peripheral viewing, they peek less. Based
on Figure 15, Bouma’s (1970) peeking rate must have
been practically zero.

Discussion

Levi (2008), Pelli and Tillman (2008), Herzog et al.
(2015), Strasburger (2020), and Coates et al. (2021) have
reviewed the crowding literature. Most recently, Coates
et al. (2021) provided a compact summary of the effects
on the Bouma factor of contrast, size, target–flanker
similarity and visual field location. This summary
includes reanalysis of old data and shows a weak effect
of stimulus duration. They also measured new data
with two durations and two meridians confirming
the effect of duration on the Bouma factor. Most of
the data in their paper were acquired on fewer than
five observers. We measured the effect of meridian,
eccentricity, crowding orientation, and font with 50
observers. We did not measure effects of contrast,
duration, or target-flanker similarity, but otherwise we
confirm all the effects that they reported. We provide
an equation predicting how crowding distance depends
on meridian, target kind, and crowding orientation for
each observer. We also show that crowding is reliable
across days.

Bouma law and factor

Bouma law
The Bouma law describes the linear increase of

crowding distance with eccentricity (Bouma, 1970;
Bouma, 1973; Levi, 2008; Pelli & Tillman, 2008; Rosen
et al., 2014). Bouma factor is the slope of that line
(Rosen et al., 2014). Bouma law is robust when fit to
individual observer’s data (Pelli et al., 2004; Rosen et
al., 2014; Strasburger, 2020; Strasburger et al., 1991).
In this study, for the first time, we fit Bouma law to
data that include measurements from 50 observers
tested with two crowding orientations at nine locations
of the visual field. Bouma law is an excellent fit to
our data and explains 82.5% of the variance despite
being just a straight line with 2 degrees of freedom.
We tried adding terms to Bouma law to account for
known factors: crowding orientation (Greenwood et
al., 2017; Kwon et al., 2014; Petrov & Meleshkevich,
2011; Toet & Levi, 1992), meridional location of the
stimulus (Fortenbaugh et al., 2015; Greenwood et al.,
2017; He et al., 1996), target kind (Coates et al., 2021;
Grainger et al., 2010), and individual differences (Petrov
& Meleshkevich, 2011; Veríssimo, Hölsken, & Olivers,
2021). We found that the enhanced model explains
a bit more variance (increased from 82.5% to 94%).
Eccentricity remains the dominant factor, accounting
for 82.5% of the variance.

Standardized Bouma factor
We define the standardized Bouma factor b′ as the

reported Bouma factor b (ratio of crowding distance
to radial eccentricity) multiplied by a correction factor
that account for differences in task from Bouma’s
25 choice alternatives, 75% threshold criterion, and
linear flanker symmetry. Bouma reported a “roughly”
0.5 slope for radial letter crowding versus eccentricity
(Bouma, 1970). Andriessen and Bouma (1976) later
reported a slope of 0.4 for crowding of lines. Coates et
al. (2021) reanalyzed Bouma’s original data with various
threshold criteria so we interpolated between the 70%
and 80% thresholds to estimate the 75% threshold.
Estimating Bouma factor from Bouma’s original data
using this criterion yielded a Bouma factor of 0.35,
in line with modern estimates of 0.3 (Table 6 and
Supplementary Table S2). Figure 11A shows that the
corrected Bouma factor b′ ranges from 0.23 for Courier
New letters to 0.39 for tumbling T measured with radial
flankers on the right meridian. That residual difference
may be due to target kind (Coates et al., 2021; Grainger
et al., 2010). This is further supported by our finding
that Bouma factor was 0.78 lower for the Sloan font
than for the Pelli font.
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Supralinearity and the Bouma law

The linearity of the Bouma law implies that the
Bouma factor is independent of eccentricity. The
Coates et al. (2021) reanalysis of Bouma’s 1970 data
found a twofold increase of the Bouma factor with
eccentricity (from 1 to 7 deg), with a log-log slope
of 0.35. Coates et al. (2021) speculated that this
eccentricity dependence might be due to Bouma’s use
of constant size stimuli at all eccentricities. Both acuity
and crowding can limit measured thresholds for size
and spacing across the visual field (Pelli et al., 2016;
Song et al., 2014). If the threshold is independent
of size, it is a crowding threshold; if the threshold is
independent of spacing, it is an acuity threshold. In
10 participants, we measured crowding distance at
eccentricities of 0, 5, 10, 20, and 30 deg, scaling letter
size with spacing as is now usual (see Methods). In our
results with proportional letter size and controlled eye
position, we found a similar twofold increase of the
Bouma factor with eccentricity (from 5 to 30 deg), with
a log-log slope of 0.38. Enhancing the Bouma law to
allow a nonlinear dependence on eccentricity improves
the fit to 10 observers’ data slightly, increasing the
variance accounted for from 90% to 95%. This effect
is small but detectable in data from 0, 5, and 10 deg
(Figure 9A) and becomes pronounced at eccentricities
of 20 and 30 deg (Figure 9B). To our knowledge,
only a few past studies measured crowding beyond
10 deg eccentricity (Bouma, 1970; Kalpadakis-Smith,
Tailor, Dahlmann-Noor, & Greenwood, 2022; Kwon
& Liu, 2019; Pelli et al., 2004), and all these datasets
show supralinear growth with eccentricity. From
the perspective of mathematical modeling, Bouma
initially suggested a simple proportionality with one
term, which later was extended to linearity with two
terms, and the evidence for supralinearity justifies a
three-term quadratic polynomial. Biologically, it seems
possible that the increase of the Bouma factor at high
eccentricity reflects a compression of eccentric visual
field in higher order areas. Indeed, hV4 has a reduced
peripheral representation when compared with earlier
visual areas, V1, V2, and V3 (Arcaro, McMains, Singer,
& Kastner, 2009; Goddard, Mannion, McDonald,
Solomon, & Clifford, 2011; Kolster, Peeters, & Orban,
2010; Winawer & Witthoft, 2015). This parallels the
idea that the ventral visual stream, specialized in object
recognition, emphasizes the central visual field (Levy,
Hasson, Avidan, Hendler, & Malach, 2001; Ungerleider
& Haxby, 1994).

Crowding asymmetries

At any given eccentricity, the Bouma factor varies
with polar angle. The Bouma factor is lower along
the horizontal than vertical meridian (Greenwood et
al., 2017; Petrov & Meleshkevich, 2011; Toet & Levi,

1992), is higher in the upper meridian than the lower
meridian (Fortenbaugh et al., 2015; Greenwood et
al., 2017; He et al., 1996; Toet & Levi, 1992), tends to
be lower in the right meridian than the left meridian
(Grainger et al., 2010; White, Tang, & Yeatman, 2020),
and approximately halves with tangential flankers
(Greenwood et al., 2017; Kwon et al., 2014). In this
work, we replicated all of these asymmetries (Figure 12
and Table 7). The horizontal versus vertical advantage
and better performance in the lower versus upper visual
field is found for many visual tasks (Himmelberg et al.,
2023), and these asymmetries parallel those found in
population receptive field size, cortical magnification,
retinal ganglion cell density, and the BOLD signal
magnitude (Benson, Kupers, Barbot, Carrasco, &
Winawer, 2021; Himmelberg, et al., 2021; Kupers,
Benson, Carrasco, & Winawer, 2022; Kupers, Carrasco,
& Winawer, 2019; Kurzawski, Gulban, Jamison,
Winawer, & Kay, 2022; Kwon & Liu, 2019; Liu, Heeger,
& Carrasco, 2006; Silva, et al., 2018). The right:left
asymmetry seems to be least described and does not
generalize across all tasks. Beyond crowding, right visual
field advantages have been reported: For native readers
of left-to-right written languages, such as English, the
right meridian outperforms left in word recognition
(Mishkin & Gorgays, 1952). Worrall and Coles (1976)
examined letter recognition across the visual field and
found a significant right hemifield advantage only
along the right horizontal midline. The similarities in
asymmetry suggest a common mechanism, and the
differences may be useful hints toward the cortical
substrate of crowding.

Standard deviation of measured acuity and
crowding

To estimate the reliability of our measurements, we
acquired each threshold twice. Previous work showed
improved performance in crowding tasks for repeated
measurements (Chung, 2007; Malania, Pawellek, Plank,
& Greenlee, 2020). From their figures, we estimated the
second-block benefit to be 13% for Malania et al. (2020)
and 20% for Chung (2007). (Chung showed thresholds
before and after 60- 100-trial blocks and showed
percent correct for each block. By eye, we estimate
that the benefit from first to second block is about a
third of that provided by the 60 blocks of training;
thus, her 62% advantage [see average data from Table 1
in Chung, 2007] after 60 blocks corresponds to the
20% advantage after the first block.) We found a
modest second-threshold improvement for crowding
thresholds measured with the Sloan font at all tested
locations and with the Pelli font in the fovea (less than
10%). Thresholds measured with the Pelli font in the
periphery yielded the highest improvement (23%). In
our data, the improvement is likely not due to acquiring
familiarity with the task, as all observers participated
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in a training session, which consisted of repeated trials
until 10 answers are correct. We found no improvement
in acuity.

Overall, we found very good reproducibility of
crowding and acuity thresholds (Figure 5). The
standard deviation of log Bouma factor b measured
with the Sloan font and radial flankers for test–retest is
much lower than the standard deviation of log Bouma
factor across observers (0.03 vs. 0.08).

Individual differences

Estimating individual differences requires data from
many observers. In this paper, we measured crowding in
50 observers, which is the biggest dataset of crowding
measurements to date. Previous in-person crowding
surveys included at most 27 observers (Grainger et al.,
2010; Greenwood et al., 2017; Petrov & Meleshkevich,
2011; Toet & Levi, 1992). (An online crowding study
tested 793 observers, but did not report individual
differences; see Liu et al., 2009.) To capture individual
differences in Bouma factor, we included an observer
factor, oi, in the enhanced model. Adding the observer
factor improved the explained variance from 92.6% to
94% (Table 4). Although this effect may seem negligible
at first, we found that the Bouma factor varied twofold
across observers, ranging from 0.20 to 0.38 (Figure 8A).
A similar, twofold variation was observed for all other
thresholds that we estimated (Figure 8A).

The Bouma factor as a biomarker

Large individual differences enhance the potential for
crowding to serve as a biomarker for studying cortical
health and development. Specifically, crowding varies
across children, too (Kalpadakis-Smith et al., 2022), and
predicts rapid serial visual presentation (RSVP) reading
speed (Pelli et al., 2007). Foveal crowding distance drops
threefold from age 3 to 8 years (Waugh et al., 2018). If
crowding correlates with the reading speed of beginning
readers, then preliterate measures of crowding might
help identify the children who need extra help before
they learn to read. Measuring crowding distance across
individuals in several diverse populations might expose
any limit that crowding imposes on reading, yielding a
norm for the development of crowding. Huge public
interventions seek to help dyslexic children read faster
and to identify them sooner. A virtue of crowding
distance as a potential biomarker for dyslexia and
cortical health is that it can be precisely measured in
30 minutes.

Crowding correlations

This paper reports 13 crowding thresholds for each of
50 observers. Such a comprehensive dataset allows for
a correlation analysis to assess how well each crowding

threshold predicts the others. We found a moderate
correlation of crowding between peripheral locations
(r = 0.39 averaged across all peripheral locations) and
hardly any between fovea and periphery (r = 0.11).
We also found that crowding measured with radial
flankers correlated highly with crowding measured with
tangential flankers at the same location (r = 0.53 for
the right meridian, r = 0.50 for the left meridian). The
threshold measurement that best predicted all other
peripheral thresholds (excluding the fovea), with a
correlation r = 0.41, was radial Sloan crowding at 10
deg in the right meridian.

Effect of stimulus configuration vs. location
We found higher correlation (r = 0.54) when the

location was the same and the stimulus configuration
was changed, than (r = 0.32) when the stimulus
configuration was the same and the location changed.
Correlation of crowding distance depends more on
location than configuration. Paralleling our result,
Poggel and Strasburger (2004) found only a weak
correlation across meridians for visual reaction
times. Surprisingly little is known about the spatial
correlations of basic measures such acuity and contrast
sensitivity.

The peeking-observer model

We always asked the observer to fixate on the
crosshair during each trial. We acquired data with two
methods: unmonitored fixation, without gaze tracking,
and awaited fixation, in which the stimulus was only
presented when gaze was near the fixation cross.
Both methods are described in detail in the Methods
section. The two methods yielded different Bouma
factor distributions. Upgrading from unmonitored to
awaited fixation increased the Bouma factor mean b
from 0.12 to 0.20 and nearly halved the SD of log b
from 0.31 to 0.18. Histograms are shown in Figure 1.
This peeking-observer model assumes, first, that
performance on each trial depends solely on target
eccentricity (relative to gaze position); second, that
the observer peeks on a fraction p of the trials and
fixates near the crosshair on the rest of the trials; and,
third, that the location of the peek is a fraction k of
the distance from the fixation mark to the anticipated
target location.

In unmonitored fixation, the observer peeks with
probability p. In awaited fixation, peeking is prevented
by using gaze-contingent display and discarding any
trials where gaze left the fixation cross while the target
was present. Suppose there are two possible target
locations. The Bouma factor distribution is unimodal
for low values of p and becomes bimodal for high
values for p. Our unmonitored b histogram is bimodal
and is best fit with a peeking probability of 50%. Our

Downloaded from intl.iovs.org on 05/06/2024



Journal of Vision (2023) 23(8):6, 1–34 Kurzawski et al. 28

awaited-fixation b histogram is unimodal and best fit
by peeking restricted to the 1.5 deg from the crosshair
allowed by the gaze tracker. Upgrading from the
bimodal to the unimodal b distribution raised the mean
b from 0.12 to 0.27 and nearly halved the standard
deviation of log b from 0.31 to 0.19.

The peeking model does not account for the
reduction of the crowding distance of a target that
occurs in anticipation of a saccade to the target
(Harrison, Mattingley, & Remington, 2013). It is
conceivable that on some awaited-fixation trials the
observer was planning an eye movement to the correct
target location and that this reduced crowding before
the eye moved.

Effects of duration and peeking
Coates et al. (2021) reanalyzed crowding data from

16 studies and presented a scatter diagram of Bouma
factor versus stimulus duration. The plot of Bouma
factor versus log stimulus duration had a semi-log slope
of −0.16 describing how the Bouma factor drops with
duration. Their analysis included many studies, with
various threshold criteria, from various meridians,
which introduced differences in the Bouma factor. To
avoid these confounds, Coates et al. (2021) collected
new data using a consistent threshold criterion and
consistent locations. In their new results, increasing
the duration from 67 to 500 ms decreased the Bouma
factor by a factor of 1/1.6. However, none of these
studies monitored fixation. Our Figure 1 shows that,
relative to controlled fixation, peeking can reduce the
Bouma factor by a factor of 1.6, which is the size of the
decrease with duration reported by Coates et al. (2021).
If the probability of peeking grows with duration, then
peeking might explain their drop in Bouma factor with
duration.

Preventing peeking
Awaited fixation eliminates peeking, as shown above,

but it requires an eye tracker. Kurzawski et al. (2023)
show that manual cursor tracking of a moving crosshair
nearly abolishes peeking and can be used online without
an eye tracker.

Why measure crowding?

Peripheral crowding provides additional information
about visual health

Acuity is the threshold size of a target for
recognition, whereas crowding is a spacing threshold.
Clinical assessment routinely includes foveal acuity
and not crowding. Both limit recognition of everyday
objects. Our results show that peripheral crowding is
independent of foveal acuity and might be a useful
biomarker of visual health. Specifically, peripheral
crowding might predict dyslexia (Bouma & Legein,

1977; Martelli, Di Filippo, Spinelli, & Zoccolotti, 2009;
O’Brien, Mansfield, & Legge, 2005). There are hints
that crowding tends to be worse in dyslexia (Pelli et
al., 2007). If crowding correlates with reading speed
of beginning readers, then preliterate measures of
peripheral crowding might help identify the children
who need extra help before they learn to read.

What about foveal crowding?
In healthy individuals, foveal crowding correlates with

foveal acuity, but there are some conditions in which
the two are dissociated. Strabismic amblyopia makes
crowding worse in the fovea, but not in the periphery
(Song et al., 2014). This suggests that the fovea might
be the most sensitive place to detect the increase in
crowding associated with amblyopia. Traditional tests
for crowding are mostly peripheral and use a fixation
mark and a brief peripheral target, which are poorly
suited for testing children and dementia patients whose
attention may wander. Such participants will fixate
much more reliably on a foveal target. We hope there
will be clinical studies to assess the diagnostic benefit of
measuring crowding.

Conclusions

1. The well-known Bouma law—crowding distance
depends linearly on radial eccentricity—explains
82% of the variance of log crowding distance,
cross-validated. Our enhanced Bouma law, with
factors for observer, meridian, and target kind,
explains 94% of the variance, cross-validated. The
very good fit states the central accomplishment of
the paper and shows how well the linear Bouma law
fits human data.

2. The Bouma factor varies twofold across observers,
meridians, and crowding orientations.

3. Consistent with past reports, five asymmetries each
confer an advantage expressed as a ratio of Bouma
factors: 0.62 horizontal:vertical, 0.79 lower:upper,
0.78 right:left, 0.55 tangential:radial, and 0.78 Sloan
font:Pelli font.

4. As noted above, the Bouma factor varies twofold
across observers. Differences across observers
are much larger than those of test–retest. The
0.08 SD of log Bouma factor across observers
is nearly triple the 0.03 SD of test–retest
when log b is measured in half an hour (2
eccentricities × 4 meridians = 8 thresholds and
8 × 35 deg = 280 trials).

5. The growth of crowding distance with eccentricity
is supralinear, which becomes obvious when
measurements extend out to 30 deg eccentricity. The
linear fit is adequate for most purposes.
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6. Crowding distance measured at 10 deg eccentricity
along the right meridian is the best predictor
of average crowding distance elsewhere (average
r = 0.39).

7. Peripheral crowding is independent of foveal
crowding and foveal acuity.

8. Simulations and data show that peeking can
skew estimates of crowding (e.g., greatly decrease
the mean or double the SD of log b). Thus it is
important to minimize peeking, e.g. by using awaited
fixation (with gaze tracking) or manual tracking of
a moving crosshair (without gaze tracking).

Keywords: crowding, critical spacing, crowding
distance, bouma’s law, object recognition, statistics of
crowding, asymmetries around the visual field
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