
Journal of Vision (2023) 23(14):3, 1–13 1

The role of texture summary statistics in material recognition
from drawings and photographs
Benjamin Balas Psychology Department,

North Dakota State University,
Fargo, ND, USA

Michelle R. Greene Psychology Department, Barnard College,
Columbia University, New York, NY, USA

Material depictions in artwork are useful tools for
revealing image features that support material
categorization. For example, artistic recipes for drawing
specific materials make explicit the critical information
leading to recognizable material properties (Di Cicco,
Wjintjes, & Pont, 2020) and investigating the
recognizability of material renderings as a function of
their visual features supports conclusions about the
vocabulary of material perception. Here, we examined
how the recognition of materials from photographs and
drawings was affected by the application of the
Portilla–Simoncelli texture synthesis model. This
manipulation allowed us to examine how categorization
may be affected differently across materials and image
formats when only summary statistic information about
appearance was retained. Further, we compared human
performance to the categorization accuracy obtained
from a pretrained deep convolutional neural network to
determine if observers’ performance was reflected in the
network. Although we found some similarities between
human and network performance for photographic
images, the results obtained from drawings differed
substantially. Our results demonstrate that texture
statistics play a variable role in material categorization
across rendering formats and material categories and
that the human perception of material drawings is not
effectively captured by deep convolutional neural
networks trained for object recognition.

Introduction

The depiction of materials in artwork is a useful
means to examine critical features for material
perception. Painting and drawing materials necessarily
entail feature selection on the part of the artist: What
contours and gradients must be included to successfully
communicate what an object or surface is made of?

What spatial layout of textures, contours, and colors
will most effectively convey a specific material property?
Beside these questions regarding the presence or
absence of specific features, there are also decisions
to be made with regard to the techniques used to
create specific features in paintings and drawings. In
general, the choices that lead to successful material
depiction thus highlight what the visual system needs
to be presented with in which positions for materials
to be perceived correctly. For example, the recipes
used by artists to depict objects with complex material
properties like grapes or lemons (Di Cicco, Wjintjes,
& Pont, 2019; Di Cicco, Wjintjes, & Pont, 2020) offer
insights into the micropatterns that support inferences
of qualities like glossiness and wetness. In the absence
of explicit instructions describing how to paint or draw
specific materials, examining how materials are depicted
across many works of art is a useful way to extract these
same insights, especially when coupled with observer
evaluations of material properties (Van Zuijlen, Pont, &
Wjintjes, 2020).

Drawings are a particularly interesting vehicle
for studying the depiction of materials in artwork.
Compared with paintings, drawings are often limited
to either grayscale values or a two-tone black and
white palette, limiting the tools available to the artist to
render materials. Also, although the perception of line
drawings has been previously explored in the context of
shape recovery (Sayim & Cavanagh, 2011; Hertzmann,
2021) to our knowledge, there is as yet far less work
examining how drawings may successfully signal
material properties. Hertzmann (2020), for example,
makes a compelling argument that line drawings (which
lack the use of techniques like shading, hatching,
and in-painting of tone) work largely by virtue of
the artist choosing to include features that capture
shape effectively and the visual system processing
drawings in the same manner as realistic images.
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Material properties are not solely communicated
by shape, however (Motoyoshi, Nishida, Sharan, &
Adelson, 2007; Baumgartner & Gegenfurtner, 2016;
Balas & Schmidt, 2017), and in some cases material
properties are conveyed graphically both by realistic
rendering of natural images and by iconic features that
signal material properties by abstraction, similar to
the techniques used in comics to communicate visual
information without adhering to realism (Cohn & Ehly,
2016). Are drawings of materials then perceived by
the human visual system in the same way as realistic
images of materials? Alternatively, could it be the
case that material drawings rely on specific aspects of
image structure more than realistic images do, and
vice versa? The answer to this question may also not
be uniform across material categories. The perception
of different classes of textures and different material
categories relies to varying extents on distinct feature
classes (Kung & Richards, 1988; Balas & Schmidt,
2017), so the critical features that support drawings
and realistic images of various materials may also be
a function of the specific categories or qualities under
investigation.

We chose to examine one particular aspect of how
realistic images depicting materials may be perceived
differently than drawings of the same: How does the
perception of these images rely on summary statistics
as opposed to the joint measurement of position and
appearance? Put more simply, does either type of
image rely more heavily on seeing specific features in
specific positions or configuration as opposed to a
texture-like description of appearance that does not
encode feature location precisely? We investigated this
question by using texture synthesis models as a tool for
generating modified versions of original images that
were matched for a broad set of summary statistics,
but differed from the original stimuli in terms of the
spatial layout of features. Specifically, we used the
Portilla–Simoncelli algorithm (Portilla & Simoncelli,
2000) for this purpose, a texture synthesis model that
has been successfully used to examine summary statistic
perception across a wide range of tasks including
texture perception (Balas, 2006), visual crowding
(Balas, Nakano, & Rosenholtz, 2009), visual search
(Rosenholtz, Huang, Raj, Balas, & Ilie, 2012), and the
neural processing of natural textures (Balas & Conlin,
2015). By rendering new images using parent images
of natural materials and drawings of materials, we are
able to create stimuli that lack the joint relationships
between position and local feature appearance,
but preserve many of the statistical properties
of the original image. Comparing the perception
of the original images to synthetic images thus
permits inferences about the importance of position
information to successful material categorization (Balas
& Schmidt, 2017; Balas, Auen, Thrash, & Lammers,
2020).

We applied this model to realistic images of different
materials and drawings of the same materials obtained
from Japanese manga to determine whether either
class of stimuli relies on positional information to a
greater extent. We hypothesized that realistic images
would be sufficiently rich in both texture-like features
and position-dependent features signaling material
properties to be robust to texture synthesis, but that
line drawings would rely more heavily on position-
dependent features and thus be harder to recognize from
our synthetic images, which do not preserve location
information from the parent image. The latter one-half
of this hypothesis was based on the observation that in
material drawings, material properties are frequently
conveyed either by exaggerated or abstract depictions
of image features like specularities that are positioned
at specific locations on objects or surfaces (the stellate
glint of a sharp sword, for example) or by small patches
of hatching or shading at crucial positions, implying
that the remaining empty surface is filled with the same
texture (e.g., an artist drawing only scattered batches of
bricks in a brick wall). However, we also hypothesized
that this effect may vary across different material
categories: Some materials may be especially reliant on
position-dependent features, while others may largely
depend on the depiction of distributed texture-like
features. Specifically, we hypothesized that glossy or
shiny materials like water or metal may depend heavily
on the position of highlights relative to contours
that signal local surface geometry (see Anderson &
Kim [2009] for a demonstration that human vision
is sensitive to these relationships), whereas matte
materials like stone and wood may be less dependent
on these conjunctions. Whatever pattern of results we
may observe across our different stimulus classes and
material categories, we also wished to know the extent
to which these effects may reflect image-level properties
of our stimuli versus higher level aspects of visual
recognition. To examine this issue, we complemented
our psychophysical results with a DNN analysis of
the discriminability of our stimuli across all stimulus
categories.

Briefly, we found that the impact of texture synthesis
on material categorization varied across materials
and also depended on the stimulus type (drawing vs.
realistic image). More important, this pattern of results
was not predicted by our deep convolutional neural
network (dCNN) analysis, suggesting that these effects
are not a simple reflection of the low-level structure
in our images, but depend on higher-order aspects
of material perception in the human visual system
that are not captured by this dCNN. We discuss these
results in terms of emergent theories regarding the
relationship between drawing and visual perception
and the potential for a unified versus material-
specific model of human material perception and
categorization.
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Methods

Stimuli

We used two different sets of stimulus images in our
task. Drawings depicting metal, stone, water and wood
were selected from the Manga Materials Database
(Saito, Kirai, & Horiuchi, 2015). We selected these
categories for two reasons. First, in prior work both
with adults (Balas, Conlin, & Shipman, 2017) and
children (Balas & Schmidt, 2017), these categories
were used to include variation in material properties
across categories, including a matte versus a glossy
appearance. Our use of these categories in the current
study helps to align our present results with those
previous reports. Second, these four categories were
both among those with the greatest number of unique
patches in the Manga Material Database and could
also be found in the database of photographic material
images we chose to use (see below). Individual images
were 512 × 512 pixels and depicted two-tone (black and
white only) drawings of objects and surfaces matching
each of our four target categories. An important
note is that these are not line drawings owing to the
presence of cross-hatching, in-painted areas (regions
filled with uniform black ink), and textured linework.
Photographs depicting the same material categories
were selected from the Flickr Materials Database
(Sharan, Rosenholtz, & Adelson, 2014) and cropped to
a square aspect ratio. To convert the original full-color
photographs into two-tone images, we applied the
function imbinarize.m in MATLAB, which uses Otsu’s
method (Otsu, 1979) to select a threshold to convert
greyscale intensities into a two-tone image (Figure 1).
Briefly, this method identifies the threshold between
light and dark pixels that minimizes the intra-class
variance, where pixel class is defined by pixel intensity
being either above or below the candidate threshold
value.

Figure 1. Examples of images from each material category used
in our experiments. The top row contains photographic images
of each material, and the bottom row contains drawings.

Figure 2. Examples of synthetic texture images from each
material category used in our experiments. The top row
contains syntheses made from photographic images of each
material, and the bottom row contains synthetic textures made
from drawings.

Participants

We recruited a total of 53 participants from
the North Dakota State University undergraduate
psychology study pool to complete this experiment. A
total of 35 participants completed the task using the
original stimulus images described above, and a total of
17 participants completed the task using images created
via the application of the Portilla–Simoncelli texture
synthesis algorithm (Portilla & Simoncelli, 2000) to
these original images. Specifically, we applied the texture
analysis and synthesis routines to each of the two-tone
drawings and photographs using the default parameters
in the MATLAB implementation of the algorithm.
This yielded a new set of two-tone images (Figure 2),
one per original image, with joint wavelet statistics that
closely match the parent image. The appearance of
these images is such that, although local structures tend
to be preserved, the global layout of the original image,
including large-scale pictorial elements, is disrupted.

All participants were between the ages of 18 and
27 years of age and self-reported normal or corrected-
to-normal visual acuity. Participants received course
credit for completing the experiment and only began
the testing session after providing written informed
consent. All recruitment and testing procedures were
approved by the North Dakota State University IRB
(Protocol #SM11167). The sample sizes of our two
participant groups are different owing to restrictions
on human subjects testing arising from the coronavirus
disease 2019 pandemic.

Procedure

We asked participants in each group to complete a
four-alternative forced choice material categorization
task using both the drawings and photographs
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described above. Participants in our first group were
only shown the original two-tone photographs and
drawings from each of our target material categories,
whereas participants in the second group were only
shown the images resulting from the application of
the Portilla–Simoncelli algorithm. For each trial,
participants were presented with a single image and
asked to categorize it as either metal, stone, water,
or wood. Image presentation time was unlimited
and participants were free to take as much time as
they liked to respond. We presented drawings and
photographs in separate blocks (2 blocks per stimulus
type) and randomized the order of these blocks for
each participant. Each block contained all of the
stimulus images of that type (192 images per block) for
a grand total of 384 trials in the entire testing session.
Within each block, stimulus order was randomized
independently for each participant.

All stimulus presentation and response collection
routines were written in PsychoPy v3.0 and
administered as an online experiment via the Pavlovia
platform. Because participants completed the task
online, we cannot comment on precise characteristics
of individual observers’ displays, but we did limit the
availability of the experiment so that smartphones and
tablets could not be used to complete the task.

dCNN modeling

We extracted layerwise activations for each image
from a dCNN (Krizhevsky, Sutskever, & Hinton, 2017)
that was pretrained on the ImageNet database (Deng
et al., 2009). This network contains eight layers, with
the first five being convolutional and the last three
fully connected. For the convolutional layers, layer
activations were obtained after max pooling. For all
layers, activation patterns were vectorized to create a
192-image byM-feature matrix. The number of features
in each layer varied from 4,096 in layers 6 and 7 to
64,896 in layer 3. Our goal was to use the activation
patterns in each layer of the network (excluding the final
classification layer) to investigate the discriminability of
material categories using both the original photographs
and drawings and the synthetic versions of these
stimulus sets. To achieve this, we carried out two stages
of dimensionality reduction. First, we applied principal
components analysis to the activation patterns in
each layer, decreasing the full activation pattern to a
192-dimensional vector, which corresponds with the
number of unique stimuli in each image condition.
This ensures that at this first stage of dimensionality
reduction we are retaining the full variance across
inputs. Subsequently, we applied t-distributed stochastic
neighbor embedding (t-SNE) (Hinton & Roweis,
2002) to reduce this 192-dimensional description of
the images to a 2-dimensional description. The latter

supports straightforward visualization of the data and
also simplifies the classification step, which we will
describe in the Results section (see also Figure 7).

Because t-SNE is a stochastic procedure that results
in different low-dimensional embeddings, each time it is
executed, we performed a linear classification analysis
on 100 independently generated t-SNE solutions at
each of the eight dCNN layers. We evaluated the
amount of category information present in each layer
via a linear support vector machine, using leave-one-
observation-out) cross-validation. This analysis was
conducted independently for original photographs,
original drawings, and texturized photographs and
drawings. We averaged across the 100 t-SNE solutions
to obtain an average accuracy for each of the eight
dCNN layers.

To compare the performance of the dCNN-based
classifier to human observers, we computed the
accuracy ratio of the classifier to humans as:

r̂ = kc/nc
kh/nh

,

where nc and nh denote the number of total trials for the
classifier and human observers, and kc and kh denote
the number of those trials that are correctly-classified,
respectively.

Additionally, we examined the agreement between
the dCNN model and human observers by calculating
the expected number of human-classifier agreements
as suggested by Tadros, Cullen, Greene, and Cooper
(2019). Briefly, this method was inspired by measures
of inter-rater reliability, such as Cohen’s Kappa, and
accounts for the fact that two independent classifiers
that are at either floor or ceiling performance will have
very high agreement by definition. This is especially
helpful when considering all layers of a dCNN, as
classification performance increases with increasing
layers. Following Tadros et al. (2019), we computed the
expected number of agreements as:

E [a] = nh
((

kc
nc

) (
kh
nh

)
+

(
wc

nc

) (
wh

nh

))
,

where wc and wh represent the number of incorrect
responses from the classifier and human observers,
respectively. From this, we can compute the difference
between observed agreement (a/nh) and expectation
(E[a]/nh), and assess whether this deviation was
significantly different from chance.

Finally, we used the level of agreement between
human observers to compute an upper bound for
the agreement that can be expected between human
observers and the classifier. If humans misclassify an
image in a consistent manner, then it is reasonable to
expect the classifier to also demonstrate this consistency.
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However, if misclassification results from random
guessing, then the classifier should not be expected to
replicate them. We created both an upper and a lower
bound for human agreement. For the upper bound,
we computed the average confusion matrix across
observers and then computed the expected agreement
between each individual observer and the group
average. For the lower bound, we created the group
average by holding out the observer being compared
with the group.

Results

Participant accuracy

Within each material category, we calculated
the proportion of correct responses for both the
photographs and drawings of our four material
categories (Figure 3). We analyzed these values using
a 4 × 2 × 2 mixed-design analysis of variance with
material category (metal, stone, water, or wood) and
image type (photograph or drawing) as within-subject
factors and with participant group (original images
or synthetic images) as a between-subjects factor. All
statistical analyses were carried out using JASP (2022).

This analysis revealed main effects of both material
category, F(3,150) = 7.50, p < 0.001, and the type

of image, original stimuli or texture-synthesized
versions, F(1,50) = 46.739, p < 0.001, that participants
categorized. The main effect of material category was
driven by a significant difference between performance
with images of wood and water, t = −4.7, p < 0.001,
such that wood was categorized more accurately
than water across all image manipulations, as well as
marginal differences between metal and water, t = 2.5,
p = 0.075, and between stone and water, t = 2.4, p =
0.098. The main effect of participant group was driven
by significantly better performance with the original
images as compared with the texture-synthesized
versions, t = 6.8, p < 0.001.

These main effects were qualified by two interactions:
A two-way interaction between material category and
image format, photographs vs. drawings, −F(3,150)
= 17.96, p < 0.001, and a three-way interaction
between all of our factors, F(3,150) = 4.80, p =
0.003. Because the two-way interaction is qualified
by the three-way interaction, we will confine our
discussion here to the three-way interaction. To
examine this interaction, it is useful to consider
how the application of texture synthesis changes the
profile of performance across material categories for
both our photographs and our drawings. Comparing
performance with drawings in Figure 3 and Figure 4,
it is evident that the application of texture synthesis
did not change the ordinal relationships across
material categories: Water remains the most difficult

Figure 3. Average proportion correct across participants for all images of original photographs (left) and synthetic images (right). Error
bars represent 95% confidence intervals.
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Figure 4. Classification accuracy for each of the four image
conditions across each of the eight dCNN layers.

category (statistically lower performance than all three
alternative categories), wood the easiest (statistically
higher than all three categories), with stone and
metal in between. By comparison, performance with
photographs does change significantly across these
two figures: Performance across material categories is
approximately uniform when participants categorized
the original stimuli, but the application of texture
synthesis introduces significant differences between
material categories. Stone emerges as the easiest
to categorize correctly, whereas performance with
water drops to near-chance levels. Metal and wood
are categorized more poorly, but not as poorly as
water.

In summary, our three-way interaction can be
described in terms of these differential effects of texture
synthesis on performance across material categories and
image formats: Removing nontexture information from
drawings does not differentially impact recognition
accuracy across material categories, but removing
nontexture information from photographs does
do this. We take this as evidence that the selection
process artists engage in to present material properties
through drawings relies on texture-like features versus
location-dependent features to a uniform degree
across material categories. By contrast, photographs
of these same materials rely on these two classes of
features to different degrees as a function of material
category.

Participant response time

We also analyzed participants’ average response
time for correct responses across material categories
and stimulus types using the same 4 × 2 × 2 mixed
design analysis of variance. This analysis revealed
only a significant main effect of material category

on performance. This main effect was driven by
significantly slower correct classification of metal
relative to water and wood, and also significantly
slower classification of stone relative to water and
wood.

Error analysis

To complement our analysis of correct responses and
the response latencies associated with correct material
categorization, we also examined the nature of the
errors participants made across material categories and
stimulus appearance manipulations. Specifically, we
wished to examine how confusability between materials
may have differed as a function of the presentation
of materials as drawings or photographs and the
imposition of texture synthesis. We investigated this by
tabulating the miscategorizations made of each type per
material, segregated both by image type (photographs
vs. drawings) and also by participant group (original
images vs. synthetic images) and subjecting these
contingency tables to a multinomial frequency analysis
using JASP. This analysis was necessary to carry
out separately for each material because the errors
participants can make differ by material category: metal
is an error response if the correct category is wood,
for example, but cannot be part of the error counts if
the correct category is metal. We, therefore, present the
outcome of these tests separately for each material,
in each case indicating how both image type and
participant group may have affected the distribution
of errors across material categories. For each material
category, we analyzed our count data of errors with
error type entered as rows in the contingency table,
texture appearance entered as columns in the table,
and image type (photographs or drawings) entered
as layers in the table. The resulting analysis allows
us to comment via χ2 tests whether the distribution
of errors across material categories was significantly
affected by texture synthesis for photographs and
drawings.

For metal images, we found that the χ2 test for
photographs, χ2 = 64.2, p < 0.001, and the χ2 test for
drawings, χ2 = 25.0, p < 0.001, reached significance.
For images of stone, the χ2 test for photographs did
not reach significance, χ2= 1.6, p = 0.46, while the test
for drawings did, χ2 = 38.9, p < 0.001. For images of
water, the χ2 test for photographs, χ2 = 7.80, p = 0.020,
and the χ2 test for drawings, χ2 = 7.84, p = 0.020,
reached significance. Finally, for images of wood, the
χ2 test for photographs, χ2 = 141.6, p < 0.001, and
the χ2 test for drawings, χ2 = 42.2, p < 0.001, reached
significance. Overall, this analysis demonstrates that
texture synthesis tends to have a differential impact
on the distribution of errors for photographs versus
drawings of materials.
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dCNN categorization accuracy

Given these behavioral results, our key questions
with regard to dCNN categorization accuracy are
two-fold: 1) Does this network replicate the pattern
of performance we observed across conditions?
and 2) Does the network’s agreement with human
performance vary according to which layer of the
network we query? The former question is a way of
asking whether our results can be accounted for by the
computations enacted to achieve accurate recognition
in another problem domain, whereas the latter helps
us to determine the relative contribution of low-level
versus high-level processing to the agreement we may
observe between humans and the model.

We first examined the classification accuracy at
each of the eight dCNN layers. This initial analysis
is an important to see if the network is capable of
performing above-chance at all and if this depends
on which layer of the network we query. As shown
in Figure 4, classification accuracy increased across
the layers, reaching maximum accuracy in the seventh
layer. We performed one-sample t tests at each dCNN
layer across the 100 classification results. We found
that original photograph classification accuracy was
above chance level at each layer, all p < 0.001. However,
original manga classification accuracy did not exceed
chance until the fifth dCNN layer. For texturized
photographs, classification accuracy started to exceed
chance in the fourth dCNN layer. Finally, the texturized
manga images were classified at above-chance levels at
all dCNN layers except for the third. In terms of our
goal to understand how human–model agreement may
depend on the level of processing within the network,
this limits our analysis to layers 5 through 7; this
constrains our analysis, but also demonstrates that the
lowest levels of the network are not effectively capturing
the variation we have observed across conditions.
Conservatively, this at least suggests that some form
of high-level integration of visual features is likely the
basis of our behavioral results.

We then examined the classification accuracy
across material in detail for layer 7. This layer was
chosen as the highest performing across stimulus
type and condition. Our main goal is to determine
whether or not the dCNN results account for our
behavioral data. More specifically, do we find that
variation across material categories, synthetic versus
original appearance, and photographic versus line
drawing presentation is similar in both cases? We
present the results of this classification analysis in
Figure 5.

Comparing Figure 3 with Figure 5, there are several
key similarities that are apparent. The application of
texture synthesis incurs a substantial performance
cost in both cases, for example. Despite the tendency
of dCNNs to rely heavily on texture-like features for

Figure 5. dCNN material categorization accuracy as a function of
material, image type, and original (top) versus synthetic
appearance (bottom). As described in the main text, multiple
iterations of the classification procedure were carried out, but
variation across these was sufficiently small that we have not
included error bars here.

image categorization (Geirhos et al., 2019; Laskar,
Sanchez, & Schwartz, 2020), this result demonstrates
that either higher-order texture statistics than those
included in the Portilla–Simoncelli feature set or more
object-like joint statistics of features and position
have relevance to material categorization for both
humans and the network. In terms of the ordinal
ranking of materials categories across our various
stimulus appearance conditions, however, we find there
is not substantial agreement between the network
and human performance. For example, if we consider
the categorization results obtained from the original
photographs and drawings, we see that humans’
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Figure 6. Sample tSNE embeddings of dCNN activations across layers to photographs (top row) and drawings (bottom row) of original
material images. Colors indicate different material categories (blue = water; brown = wood; light gray = stone; dark grey = metal).

Figure 7. Ratio of classifier to human accuracy as a function of dCNN layer. Shaded error region reflects 95% confidence intervals.

relatively flat performance across material categories
is reflected in network accuracy, but that the ordinal
ranking of drawings is quite different. Humans find
drawings of water the hardest to categorize accurately,
whereas the network finds drawings of metal to be the
most difficult. Likewise, stone and wood drawings are

also reversed relative to human observers in terms of
categorization accuracy.

Examining the distribution of these categories in a
t-SNE embedding (Figure 6), it is potentially important
that metal/water and wood/stone are separable clumps
in this space: The reversal of which category is
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categorized most easily across humans and the network
could be the result of a criterion difference humans
maintain favoring one member of each category pair
over the other. Considering the results obtained from
synthetic images, we find once again that, although the
overall pattern of results across photographic stimuli is
matched, drawing performance differs between humans
and the network. In this case, we observe the same
reversal of stone/wood accuracy in the network, but
in this case the difference between metal and water
accuracy is in the same direction as human observers.

We next examined the ratio of the classifier’s
accuracy at each of the eight dCNN layers to human
observers. As shown in Figure 7, for each stimulus
type and condition, human observers outperformed
the classifier from the early dCNN layers, but were
outperformed by the later dCNN layers. A three-way
mixed model analysis of variance with condition
(original or texturized) as a between-subjects factor,
and stimulus type (photograph or drawing) and dCNN
layer as within-subjects factors revealed a significant
main effect of condition, F(1,50) = 7.9, p = 7.0e-3, ges
= 0.103, whereby the human observers outperformed
the classifier for the original images, ratio = 0.82 on
average, but not the texturized images, ratio = 1.01
on average. We observed no significant main effect of
stimulus type, F(1,50) = 2.02, p = 0.16. We observed
a significant main effect of dCNN layer, F(7,350) =
472.2, p = 4.9e-174, ges = 0.49, whereby the accuracy
ratio between the classifier and humans increased
with increasing dCNN layer. Moreover, we observed a
significant interaction between condition and stimulus
type, F(1,50) = 8.72, p = 5e-3, ges = 0.03. For both
drawings and photographs, the accuracy ratio of the
classifier to humans was larger for the texturized images
than for the originals, suggesting that the classifier
outperforms humans in these circumstances. This effect
was larger for the drawings than the photographs.
We also observed a significant interaction between
condition and dCNN layer, F(7,350) = 36.25, p =
5.4e-26, ges = 0.07. For texture images, the increase in
accuracy ratio over dCNN layer was shallower than for
original images. Furthermore, we observed a significant
interaction between stimulus type and dCNN layer,
F(7,350) = 23.8, p = 2.1e-26, ges = 0.008. Although
photographs and drawings had similar accuracy
ratios at lower dCNN layers, the accuracy ratio for
photographs exceeded drawings in later layers. Finally,
we observed a significant three-way interaction between
condition, stimulus type, and dCNN layer, F(7,350) =
42.3, p = 4.3e-43, ges = 0.02.

To more fully examine the similarities and differences
between the dCNN and the human observers, we
examined the level of agreement in responses relative to
what would be expected from the overall performance
(see Methods for details). In Figure 8, we scaled the
agreements between the expected level (shown as zero

Figure 8. Agreement between classifier and human observers.
Zero on the y-axis represents the expected level of agreements,
based on the overall classification accuracy of that layer, and 1
on the y-axis represents the noise ceiling (i.e., how well one
observer agrees with another observer).

on the y axis) and the noise ceiling that reflects how
well one observer can predict another (shown as one
on the y axis). For original content (both photos and
drawings), human classifier agreement was relatively
constant across dCNN layers. However, we observed
that human classifier agreement tended to increase
with increasing dCNN layer for texturized photos and
drawings.

General discussion

Our behavioral experiment revealed that photographs
and drawings of materials differentially rely on
nontexture information versus texture statistics across
material categories. Joint encoding of local appearance
and position varies in its importance in natural images
of different materials, but whatever process artists
engage in to select and render aspects of material
appearance across different categories seems to induce a
more consistent balance between these cues.With regard
to photographs of images and their texture-synthesized
counterparts, our results with these two-tone renderings
of natural materials are partly consistent with prior
work (Balas et al., 2017). In particular, as we observed
in prior work examining how synthetic materials were
recognized compared with recognition of original
images presented in the fovea and the visual periphery,
there is little difference in accuracy across categories
when unaltered images are available to observers, but
the imposition of texture statistics introduces variation
across categories. The same pattern of ordinal results
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was observed in our previous work with full-color
natural images and the current study, which provides a
useful replication of that data and validates our claims
with regard to photographic images of natural material
categories after the binarization transform applied to
make photographs more comparable with our drawing
stimuli.

Our initial hypothesis was that materials that are
typically glossy in appearance, like metal and water,
would be most affected by texture synthesis owing
to the diagnostic value of specularities coinciding
with specific surface geometry (Fleming & Bulthoff,
2005; Ho, Landy, & Maloney, 2008; Anderson &
Kim, 2009). We further expected that artists might
preferentially use that information to depict these
materials, leading to a disproportionate cost of texture
synthesis on drawings of glossy materials. Instead,
our behavioral results indicate a different pattern
that reveals some surprising properties of drawings
and photographs of these natural material categories.
Images of water, whether they are photographs or
drawings, are profoundly affected by the imposition of
texture synthesis. Participants were at or near chance
when attempting to categorize synthetic versions of
these images in both formats, which demonstrates that
texture information alone is definitely not sufficient
to signal the presence of water either in drawings or
in natural images. This is consistent with some early
attempts to capture the appearance of water using
computer graphics (Kung & Richards, 1988), which
relied heavily on a physical model of light interacting
with water. Our data suggest that, although aspects of
water may be texture like (e.g., ripples that extend across
the surface of a pond), reliable categorization of an
image as water is extremely difficult when only texture
statistics have been preserved. Another surprising
feature of our data is the differential impact of texture
synthesis on drawings and photographs of stone.
Specifically, drawings of stone are disproportionately
impacted by texture synthesis relative to photographs.
This pattern of results is what we would expect if artists
tend to include specific features in specific positions to
communicate stoniness rather than approximate the
texture of stone in drawings. Although the presence
of this pattern of results with regard to stone in
particular is contrary to our initial hypotheses, it
nonetheless supports our broader idea that drawings
may differ from photographs of materials in terms of
the sufficiency of texture statistics for carrying category
information. An interesting possibility to consider is
whether artists’ tend to use specific techniques to render
a stony texture that incorporate small patches of texture
in critical places within an outline to convey stone-like
material without covering the entire surface in stippling
or hatching.

None of these intriguing results are reflected in
the outcome of our DNN analysis. Although the

accuracy we obtain from the model improves as we
look at higher levels of the network, the model also
predicts a consistent advantage for photographs over
drawings, which is not what we observed in human
observers. Thus, though our analysis confirms prior
work demonstrating that drawings of materials can
be classified accurately by DNNs (Horiuchi, Saito, &
Hirai, 2017), it also reinforces the fragility of these
models to generalize beyond the statistical relationships
in their training sets.

Interestingly, although classifiers from early
DNN layers were less accurate than human
observers, classifiers from later layers exceeded
human performance in all conditions. This effect was
particularly strong for the original photographs and
drawings and may reflect the fact that DNNs have been
shown to be more reliant on texture compared with
human observers (Geirhos et al., 2019; Laskar et al.,
2020). Upon examining the item-by-item agreement
between DNNs and human observers, we found that, in
all conditions, agreement was higher than what would
be statistically expected based on overall performance,
but substantially under the average agreement between
individual human observers. Additionally, we found
subtle differences in the level of agreement across
dCNN layers. For original images, we observed the
most human classifier agreement in the early-to-mid
dCNN layers. By contrast, texturized images had the
most agreement in the later DNN layers.

That our DNN analysis does not match the human
data raises the interesting question of exactly what the
human visual system is doing differently that leads to
the pattern of results we observed in our recognition
task. As we noted elsewhere in this article, dCNNs
that succeed at object recognition seem to do so via
the use of more texture-dependent processing than
human observers do (Geirhos et al., 2019; Laskar et al.,
2020), but what insights do the current results provide
about how drawings in particular may be perceived?
An interesting possibility suggested by our data is that
human observers may be ultimately outperformed
by the dCNN at later levels of the network owing to
an under-reliance on texture information by humans
when shape and other higher-level features are available
in original photographs and drawings. The fact that
the classifier/human ratio is lower when images have
been subject to texture synthesis may be the result
of human observers being unable to be misled by
these aspects of appearance when they are removed
by the Portilla–Simoncelli model. Further exploring
this relationship by limiting human observers’ ability
to use object and shape features in other ways (e.g.,
aperturing) and looking for increases in material
categorization may be an interesting way to characterize
feature use in complex texture images.

With regard to photographic renderings versus
drawings of materials, another intriguing possibility is
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that drawings may include diagnostic features that do
not have a direct correspondence to the real appearance
of materials. McCloud (1994) suggests that comics
(and drawings more generally) are interpretable by
observers largely because of an accumulated iconic
vocabulary that offers a shorthand for extracting
meaning from drawings. That is, observers must learn
artistic conventions (that may vary cross-culturally)
so that they can successfully recognize the content of
line drawings and other artwork based on the presence
of specific features that signal objects, surfaces, and
materials. The nature of such an iconic vocabulary is
perhaps best exemplified by considering the use of zip
lines in comics to depict object motion (Ito, Seno, &
Yamanaka, 2010). These trailing lines that explicitly
depict the path of a point on an object as it passes
through space do not reflect a real physical entity
observers have experience seeing, but are instead a
matter of convention: Artists and viewers have agreed
that these elements imply motion. Some of what DNNs
may not capture about the human recognition of
material categories in drawings may be related to the
existence of such an abstract shorthand for signaling
material categories that human observers understand,
but that is not easily captured in this framework.
An interesting question to ask about the nature of
such an iconic vocabulary for recognizing materials is
how it is acquired. In prior work, school-age children
have been found to be poorer than adults at using
texture statistics to categorize or name materials, but
these performance differences are less evident in a
matching task that does not require labeling (Balas &
Schmidt, 2017). One possibility is that these results
may reflect the slow acquisition and refinement of an
iconic vocabulary for material categorization, one that
may be especially useful for interpreting drawings.
Compared with adults, we would predict that children
may not be as affected by the imposition of texture
synthesis on material drawings, because they may
lack the iconic vocabulary that contributes category
information above and beyond what texture statistics
provide.

The current study does include some important
limitations. First, our choice to examine just four
material categories potentially limits the generalizability
of our results. Indeed, our data suggest that the impact
of texture synthesis on the perception of photographs
versus drawings varies across material, so examining a
broader range of material categories is likely to yield
different outcomes. We suggest that this is a potentially
important direction for future work, especially with
regard to different strategies for rendering specific
materials in drawings that incorporate extended texture
patterns versus local features placed in particular
locations. Second, our examination of texture statistics
is confined to the class of wavelet correlations
implemented via the Portilla-Simoncelli algorithm.

There are many other candidate models of texture
processing to consider, and the different assumptions
these models make about the basic vocabulary of
texture processing may also influence the outcome of
our tasks. Finally, we also note that varying the nature
of the dCNN we use to attempt to capture human
behavior may also be an important way to understand
how drawings and photographs of these materials
are processed. What type of training is necessary to
replicate our results? Do different regimes of network
tuning via structured training lead to closer agreement
with human observers?

These limitations notwithstanding, the current
results demonstrate that drawings of materials and
photographs of materials rely on texture statistics to
different extents across material categories. Our data
point to intriguing additional questions regarding
how materials and material properties are depicted
in artwork and recognized by human observers. In
future work, we aim to examine these issues using
a broader set of material properties and a range of
different feature vocabularies for describing image
structure in terms of low-level, mid-level, and high-level
descriptors.

Keywords: material perception, drawing, texture
perception, deep neural networks

Acknowledgments

Commercial relationships: none.
Corresponding author: Benjamin Balas.
Email: benjamin.balas@ndsu.edu.
Address: Psychology Department, 1210 Albrecht Blvd.,
North Dakota State University, Fargo, ND 58102-6050,
USA.

References

Anderson, B. L., & Kim, J. (2009), Image statistics
do not explain the perception of gloss and
lightness. Journal of Vision, 9(11), 1–17,
https://doi.org/10.1167/9.11.10.

Balas, B., Conlin, C., & Shipman, D. (2017). Summary
statistics and material perception in the visual
periphery.ACMTransactions on Applied Perception,
13(2):8, 1–13.

Balas, B., & Schmidt, J. (2017). Children’s use of visual
summary-statistics for material categorization.
Journal of Vision, 17, 1–11.

Balas, B. J. (2006). Texture synthesis and perception:
Using computational models to study texture

Downloaded from intl.iovs.org on 05/06/2024

https://doi.org/10.1167/9.11.10


Journal of Vision (2023) 23(14):3, 1–13 Balas & Greene 12

representations in the human visual system. Vision
Research, 46(3), 299–309.

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A
summary-statistic representation in peripheral
vision explains visual crowding. Journal of Vision,
9(12), 1–18.

Balas, B., & Conlin, C. (2015). The visual N1 is sensitive
to deviations from natural texture appearance. PloS
One, 10(9), e0136471.

Balas, B., Auen, A., Thrash, J., & Lammers, S. (2020).
Children’s use of local and global visual features for
material perception. Journal of Vision, 20(2), 10.

Baumgartner, E., & Gegenfurtner, K. R. (2016).
Image statistics and the representation of material
properties in the visual cortex. Frontiers in
Psychology, 7, 1185.

Cohn, N., & Ehly, S. (2016). The vocabulary of manga:
Visual morphology in dialects of Japanese Visual
Language. Journal of Pragmatics, 92, 17–29.

Deng, J., Wei, D., Socher, R., Li-Jia, L., Kai, L., & Li,
F.-F. (2009). ImageNet: A large-scale hierarchical
image database. IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2009,
248–255.

Di Cicco, F., Wjintjes, M., & Pont, S. C. (2020). If
painters give you lemons, squeeze the knowledge
out of them. A study on the visual perception of
the translucent and juicy appearance of citrus fruits
in paintings. Journal of Vision, 20(13), 12.

Di Cicco, F., Wjintjes, M. W. A., & Pont, S. C.
(2019). Understanding gloss perception through
the lens of art: Combining perception, image
analysis and painting recipes of 17th century
painted grapes. Journal of Vision, 19(3), 1–15,
https://doi.org/10.1167/19.3.7.

Fleming, R. W., & Bülthoff, H. H. (2005). Low-level
image cues in the perception of translucent
materials. ACM Transactions on Applied Perception,
2(3), 346–382.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge,
M., Wichmann, F. A., & Brendel, W. (2019).
ImageNet-trained cnns are biased towards texture;
increasing shape bias improves accuracy and
robustness. International Conference on Learning
Representations (ICLR 2019) May 6–9, 2019, New
Orleans, Louisiana.

Hertzmann, A. (2021). The role of edges in line drawing
perception. Perception, 50(3), 266–275.

Hertzmann, A. (2020). Why do line drawings
work? a realism hypothesis. Perception, 49(4),
439–451.

Hinton, G., & Roweis, S. (2002). Stochastic neighbor
embedding. In Proceedings of the 15th International

Conference on Neural Information Processing
Systems (NIPS’02). Cambridge, MA: MIT Press;
857–864.

Ho, Y.-H., Landy, M. S., & Maloney, L. T. (2008).
Conjoint measurement of gloss and surface texture.
Psychological Science, 19(2), 196–204.

Horiuchi, T., Saito, Y., & Hirai, K. (2017). Analysis
of material representation of manga line drawings
using convolutional neural networks. Journal
Imaging Science and Technology, 61(4), 40404–1–10.

Ito, H., Seno, T., & Yamanaka, M. (2010). Motion
impressions enhanced by converging motion lines.
Perception, 39(11), 1555–1561.

JASP Team. (2022). JASP (Version 0.16.1)[Computer
software].

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).
ImageNet classification with deep convolutional
neural networks. Communications of the ACM,
60(6), 84–90.

Kung, T. J., & Richards, W. A. (1988). Inferring “water”
from images. In W. A. Richards (Ed.) Natural
computation. Cambridge, MA: MIT Press. pp.
224–233.

Laskar, M., Sanchez Giraldo, L. G., & Schwartz,
O. (2020). Deep neural networks capture texture
sensitivity in V2. Journal of Vision, 20(7), 21.

McCloud, S. (1994). Understanding comics: Writing and
art. New York: Harper Perennial.

Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E.
H. (2007). Image statistics and the perception of
surface qualities, Nature, 447(7141), 206–209.

Otsu, N. (1979). A threshold selection method from
gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9, 62–66.

Portilla, J., & Simoncelli, E. P. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of
Computer Vision, 40, 49–70.

Rosenholtz, R., Huang, J., Raj, A., Balas, B.
J., & Ilie, L. (2012). A summary statistic
representation in peripheral vision explains visual
search. Journal of Vision, 12(4), 12.1.14 14.
https://doi.org/10.1167/12.4.14 14.

Saito, Y., Hirai, K., & Horiuchi, T. (2015). Construction
of manga materials database for analyzing
perception of materials in line drawings. Color and
Imaging Conference, 2015(1), 201–206.

Sayim, B., & Cavanagh, P. (2011). What line drawings
reveal about the visual brain. Frontiers in Human
Neuroscience, 5, 118.

Sharan, L., Rosenholtz, R., & Adelson, E. H. (2014).
Accuracy and speed of material categorization in
real-world images. Journal of Vision, 14(9), 12.

Downloaded from intl.iovs.org on 05/06/2024

https://doi.org/10.1167/19.3.7
https://doi.org/10.1167/12.4.14 14


Journal of Vision (2023) 23(14):3, 1–13 Balas & Greene 13

Tadros, T., Cullen, N. C., Greene, M. R., & Cooper,
E. A. (2019). Assessing neural network scene
classification from degraded images. ACM
Transactions on Applied Perception, 16(4), 1–20,
https://doi.org/10.1145/3342349.

Van Zuijlen, M. J. P., Pont, S. C., & Wjintjes, M.
W. A. (2020). Painterly depiction of material
properties. Journal of Vision, 20(7), 1–17,
https://doi.org/10.1167/jov.20.7.7.

Downloaded from intl.iovs.org on 05/06/2024

https://doi.org/10.1145/3342349
https://doi.org/10.1167/jov.20.7.7

