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PURPOSE. This study explored the relationship among microvascular parameters as
delineated by optical coherence tomography angiography (OCTA) and retinal perfusion.
Here, we introduce a versatile framework to examine the interplay between the retinal
vascular structure and function by generating virtual vasculatures from central retinal
vessels to macular capillaries. Also, we have developed a hemodynamics model that
evaluates the associations between vascular morphology and retinal perfusion.

METHODS. The generation of the vasculature is based on the distribution of four clinical
parameters pertaining to the dimension and blood pressure of the central retinal vessels,
constructive constrained optimization, and Voronoi diagrams. Arterial and venous trees
are generated in the temporal retina and connected through three layers of capillaries
at different depths in the macula. The correlations between total retinal blood flow and
macular flow fraction and vascular morphology are derived as Spearman rank coeffi-
cients, and uncertainty from input parameters is quantified.

RESULTS. A virtual cohort of 200 healthy vasculatures was generated. Means and standard
deviations for retinal blood flow and macular flow fraction were 20.80 ± 7.86 μL/min
and 15.04% ± 5.42%, respectively. Retinal blood flow was correlated with vessel area
density, vessel diameter index, fractal dimension, and vessel caliber index. The macular
flow fraction was not correlated with any morphological metrics.

CONCLUSIONS. The proposed framework is able to reproduce vascular networks in
the macula that are morphologically and functionally similar to real vasculature. The
framework provides quantitative insights into how macular perfusion can be affected by
changes in vascular morphology delineated on OCTA.

Keywords: macula, computational model, sensitivity analysis, hemodynamics, digital
twins, in silico model

The retina is a highly oxygen-dependent, complex band
of tissue at the back of the eye that plays a key

role in visual function. It requires close interplay among
many different cell types and supporting structures, includ-
ing a complex vascular system.1 As a result, the retina
is sensitive to small changes that may lead to loss of
visual functions. In silico modeling has the potential to
offer insight into the complex interactions between the
retinal environment and the underlying causes of retinal
diseases. In particular, virtual populations and in silico clin-
ical trials are a promising way to enhance basic research
and clinical trials.1 Optical coherence tomography angiog-
raphy (OCTA) is a non-invasive imaging modality that
offers three-dimensional, high-resolution angiograms of the
macula, which is the central-most area of the retina. Several
microvascular metrics, such as vessel density and fractal
dimension, have been suggested to quantify the quality

of the microvasculature on OCTAs.2 Using those metrics,
several microvascular changes have been linked not only
with aging and diseased retinae3–7 but also with cere-
brovascular changes and cardiovascular diseases.8–10 For
the brain and heart vasculatures, virtual populations have
been developed, but similar work is yet to be done for
the retinal vasculature or for the linked cerebral–retinal
vasculature.1

Alterations to the retinal and choroidal vasculature are
expected to negatively affect the perfusion of the retina.
Ischemia and hypoxia are likely involved in the pathogen-
esis of several retinal diseases, particularly in neovascular
diseases such as neovascular age-related macular degen-
eration, proliferative diabetic retinopathy, or retinal vein
occlusion, which are characterized by pathological growth
of blood vessels through angiogenesis.11 Although angio-
genesis and vascular endothelial growth factor (VEGF)
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are essential to the development of the vascular and in
maintaining physiological conditions, the upregulation of
VEGF is involved with the development of pathological
neovasculature.12,13 Hypoxia is a known upregulating factor
of VEGF, and targeting ischemia-induced angiogenic path-
ways might improve treatment outcomes.14

Retinal oximeters provide a way to analyze oxygen satu-
ration in some of the larger blood vessels of the superficial
retina. However, experimental measurements in the tissue
and in the capillaries of the retina remain difficult or inva-
sive, so there is still uncertainty regarding the role of hypoxia
in the pathogenesis of neovascular diseases. Furthermore, it
also remains unclear how changes in microvascular metrics
computed on OCTAs relate to the quality of blood perfu-
sion. Computational models of the retina and its vasculature,
combined with mathematical models of hemodynamics and
oxygen transport, can help to link vascular structure and
function.

Retinal hemodynamics and oxygenation have received
considerable attention from the modeling community in
recent years.1,15–24 Compartmental models15,18,21 and/or
symmetrical branching networks18,22,23 are used in many
of these models. These approaches are favored for their
simplicity and adaptability to systems with limited infor-
mation; however, they fail to reproduce the complexity
and heterogeneity of the retinal vasculature.24 In contrast,
models based on vascular networks reconstructed from
imaging data16,20 are more faithful to the morphology of
the retina, but the reconstruction of the network is arduous;
therefore, only a limited number of eyes can be modeled.
Space-filling algorithms offer a way to circumvent these
problems by generating heterogeneous networks with char-
acteristics similar to those of real vasculature.17,25,26 For
example, Causin et al.17 used diffusion-limited aggregation
because it creates structures with a fractal dimension simi-
lar to that of retinal vasculature. The class of space-filling
algorithms referred to as constrained constructive optimiza-
tion (CCO) algorithms is another approach that includes
rules and constraints meant to reproduce the angiogenesis
process.25,26 It has been applied to the retinal vasculature27,28

but only to create synthetic data for deep-learning applica-
tions.

Vascular morphology has been established as a
biomarker for the development, progression, and prognosis
of several retinal diseases,29,30 including diabetic retinopa-
thy31,32 and age-related macular degeneration.6,33 Changes
in these metrics may indicate impairment to retinal or macu-
lar blood flow, which could contribute to development of the
disease. However, quantifying these impairments in a suffi-
ciently large population is challenging with conventional
experimental techniques.

The modeling framework presented here can quantify
these impairments in large virtual populations. The model
captures the complexity of the macular vasculature and is
able to link imaging biomarkers with physiological param-
eters. Our study sought to (1) develop a method for gener-
ating coherent vascular networks in the retina and macula,
adaptable to virtual population generation; (2) propose a
mathematical model of blood flow in the virtual vascula-
tures; and (3) quantify associations between macular vascu-
lar morphology and hemodynamics parameters in a healthy
retinal population. All three capillary layers were modeled
in the macula. We then compared the microvascular struc-
ture of the model with OCTA measurements and validated
the blood flow model against two independent experimen-

tal studies. A global sensitivity analysis of the hyperparam-
eters of the method is detailed, laying the foundation for
generating tailored retinal populations based on the distri-
bution of morphological metrics. The uncertainty quantifi-
cation results then presented show the robustness of the
predictions of our model.We also provide a discussion of the
results and summarize the conclusions and future perspec-
tives.

METHODS

In this section, we describe the proposed models, the model
that generates the retinal vasculature from the macro- to
microscale, and the proposed hemodynamic model.

Structural Model

The structural model generates retinal vasculature from the
macroscale (arteries, arterioles, veins, and venules) to the
microscale (capillaries). Macroscale vasculature is generated
on the temporal retina, starting from the central retinal artery
(CRA) and ending in the central retinal vein (CRV). First, a
statistical shape model36 of the major temporal arcades was
developed using a fundus photographs dataset. The remain-
ing superficial temporal vasculature was partially generated
with a CCO algorithm.26

Microvasculature is generated in the macula area
(see Fig. 1) across three vascular layers—namely, the super-
ficial vascular plexus (SVP), intermediate capillary plexus
(ICP), and deep capillary plexus (DCP), arranged as parallel,
planar layers at fixed depths z. In contrast, the macrovascu-

FIGURE 1. Architecture of the retina. (A) Landmarks of the retina
on a 45° field-of-view colour fundus photograph from the DRIVE
dataset.34 (B) Histology imaging of the three capillary layers of
the macula. White arrows show connecting vessels between plexi.
Image was adapted from the work of An et al.35 and is available
under a CC BY-NC-ND license.
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TABLE 1. List of Model Parameters and Their Ranges

Population Parameters Description Value (Mean ± SD)

rCRA Radius of the central retinal artery (μm) 81 ± 849

vCRA Blood velocity in the central retinal artery (cm/s) 6.3 ± 1.249

MAP Mean arterial pressure (mmHg) 84 ± 649

IOP Intraocular pressure (mmHg) 11.1 ± 2.150

Macrovasculature Parameters Description Value (Stages 1, 2, 3)

Nterms Number of terminal vessels, n 200, 150, 75
ppre-capillary Target pressure at terminal vessels (mmHg) 30, 23, 23
rretina Radius of the modelled region, centered around the fovea (mm) 15
rperifovea Radius of the perifoveal (or macular region) (mm) 3
rparafovea Radius of the parafoveal region (mm) 1.5
(σ , μ, r0) Parameters of the log-normal distribution giving the distance of

new terminal vessels from the center of the fovea as
r = r0 + eμ+σ Z, with Z ∼ N(0,1)

4, –0.5, 0.02 for all stages

δ Minimal radius symmetry ratio at bifurcations in Equation 1 0.8, 0, 0
θmin Minimum bifurcation angle in Equation 1 (deg) 60, 60, 60
γ Murray’s law coefficient in Equation 1 3, 2.85, 2.8522,41

η Starting point of the fixed-point iterations for the effective
viscosity model used by the CCO algorithm26 (cP)

0.3622

lfr lmin correction step factor (Equation 2) 0.8, 0.5, 0.5
v Perfusion area factor of the CCO algorithm (Equation 2) 1, 1, 1
fn Neighborhood factor for finding candidate bifurcation points 1, 1, 1

Microvasculature Hyperparameters Description Value (SVP, ICP, DCP)

Nseeds Number of seeds used to generate a capillary bed, n 5500, 16,000, 10,500
rcapillary Radius of capillaries (μm) 2.5, 2.5, 2.5
rFAZ Radius of the foveal avascular zone (mm) 0.25, 0.25, 0.2551

z Plexus depth (μm) 0, 135, 18051

lature is only generated in the SVP. This is because the ICP
and DCP are composed of capillaries in the perifovea and
merge with the SVP outside the macula.37

Macrovasculature.
Statistical Shape Model. Major temporal arcade vessels

were manually segmented from the DRIVE dataset.34 The
major temporal arcade vessels correspond to the four vessels
(two veins, two arteries) that branch directly from the CRA
and CRV and extend toward the superotemporal and infer-
otemporal quadrants of the retina, as shown in Figure 1A.
Vessel centerline segmentations, from their branching at
the level of the optic disc to the boundary of the fundus
photograph (Fig. 1A, orange area), were extracted from
eight color fundus photographs of eyes without retinopa-
thy and centered at the fovea. Segmentation was performed
using the Freehand Line tool in ImageJ 1.48 (National Insti-
tutes of Health, Bethesda, MD, USA).38 The pixel coordi-
nates for each curve were extracted and translated so that
the fovea was at the origin. This ensures that the model
learns the distance between the optic disc and the fovea
and between the arcades and the fovea, which may have
importance in disease.39 For images of right eyes, curves
are reflected across the y-axis so that all shapes correspond
to left eyes (i.e., the optic disc will be on the left-hand
side of the image). A simple principal component analysis–
based statistical shape model learns the shape of all four
temporal arcade vessels based on the location of inflexion
points along the vessels (see Supplementary Material S1).
The generated shapes are converted to length units using the
rule of thumb for fundus photographs: 10° ≈ 5 mm, where
the angle describes the field of view of the fundus camera.
The generated vessels are linked to the CRV or CRA accord-
ingly and assume initially the same radius as the central reti-
nal vessels. The radius of the CRA is given in Table 1, and
the radius of the CRV is larger by a factor of 1.1.1.40 The radii

of vessels other than the CRA and CRV are updated during
the generative process, as described below.

Arterial/Venous Branching Trees. The statistical shape
model produces pairs of temporal arcades: one arterial
linked to the CRA, one venous linked to the CRV. This section
describes how an arterial and a venous tree is generated
for each arcade. At this stage, trees are structured branch-
ing trees using a space-filling algorithm. The algorithm is
a modification of the CCO algorithm.26 With the CCO, trees
are grown to minimize the total volume of the tree while, for
each addition of vessel segments, keeping a constant pres-
sure drop from inlet to outlet and satisfying several geomet-
rical constraints. The hemodynamic model used by the CCO
algorithm is similar to Equations 5 to 7 but with a different
viscosity model.26 Viscosity is computed with a fixed-point
scheme with starting point η. The geometrical constraints
affect the radius of branches,41 the symmetry of branches,
and the branching angle and aspect ratio of new segments.26

Specifically, when rp, r1, and r2 represent the radius of the
parent vessel and the two daughter branches, respectively,
and θ is the angle between the two branches, the following
constraints apply:

rγ
p = rγ

1 + rγ
2 ,

min (r1, r2)
max (r1, r2)

> δ and θ > θmin. (1)

Further constraints ensure that the generated tree
provides a relatively homogeneous coverage of the domain.
Namely, for a tree grown in a domain � ⊂ R

2 with N termi-
nal vessels, the location for a new terminal vessel is rejected
if it is less than

lmin =
(

ν

π (N + 1)
∫� dA

)1/2

. (2)
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If 20 consecutive points fail to satisfy Equation 2, lmin is
reduced by a factor lfr.

In addition to the original CCO algorithm constraints, tree
growth is geometrically constrained to prevent vessels from
crossing the line that passes through the optic disc center
and the center of the fovea, which separates the superior and
inferior halves of the retina. Additionally, we used a custom
log-normal probability distribution (see Table 1) to select
the location of new vessel segments to mimic an angiogenic
process biased toward the fovea while keeping the foveal
avascular zone (FAZ) free of vessels. Indeed, the fovea has a
higher concentration of cells and therefore greater metabolic
needs compared to the rest of the retina.42 For a candidate
terminal vessel located at xnew, the CCO algorithm finds the
most suitable vessel within a radius fn × (∫� dA)

1/2 of xnew
that satisfies the above geometrical constraints.

The CCO algorithm is applied in three stages, within three
circular regions: in a disk of radius rretina (i.e., the entire
computational domain), in an annulus with radii rparafovea
and rperifovea, and finally in a disk of radius rparafovea (Fig. 1).

To simulate growth biased toward the fovea while keep-
ing the FAZ free of vessels, the coordinates of a segment
endpoint are given by x = (rcosθ , rsinθ), where θ is the
opening angle and follows a uniform distribution over the
interval [0, 2π ] and r is the distance to the center of the
macula, as shown in Figure 1A, and follows a log-normal
distribution (see Table 1). Arteriovenous networks of the
superficial vascular plexus are generated in three steps: (1)
the CCO algorithm is applied to create a backbone of larger
arterioles and venules from the arterial and venous arcades.
The arterial and venous backbones are grown separately in
the first step. For each tree, the CCO algorithm requires volu-
metric blood flow at the root (CRA or CRV) and a pres-
sure drop across the vasculature. Blood flow in the CRA
is computed from its radius and blood flow velocity. From
conservation of mass, blood flow is the same in the CRV.
Ocular perfusion pressure (OPP) refers to the pressure drop
between the CRA and CRV, namely:

OPP = pCRA − pCRV . (3)

Pressure in the CRV is assumed equal to intraocular pres-
sure (IOP).21,43,44 Pressure in the CRA is estimated from the
mean arterial pressure (MAP)21,43,44:

pCRA = 2

3
MAP. (4)

The pressure drops across the vascular trees are set to
ppre-capillary – pCRV for the venous tree and pCRA – ppre-capillary
for the arterial trees. The value of ppre-capillary is taken from
pressure in pre- and postcapillary vessels in the theoretical
model by Takahashi et al.22

Microvasculature. At the macroscale, arterioles and
venules generally follow a bifurcating structure, with parent
vessels giving rise to two daughter branches. The CCO
algorithm follows this logic to create vascular trees. At the
microscale, however, capillaries tend to form complex nets,
forming loops and anastomoses35 that are incompatible with
the logic of the CCO algorithm. Therefore, we adopted the
method proposed by Linninger et al.25 to generate capillary
beds connecting the arterial and venous trees. In short, a
disk of the size of the macula (see Table 1) is meshed with
a Delaunay triangulation generated from Nseeds randomly
sampled points within the disk. The centroids of the trian-

gles are used to generate a Voronoi diagram. In brief, a
Voronoi diagram partitions the plane into polygonal regions
centered around input points. The edges of the polygons
form the capillary bed. In the SVP, capillaries coexist with
arterioles and venules but should not intersect them; there-
fore, capillaries intersecting with arterioles or venules are
removed from the capillary bed. This also creates a capillary-
free region that is found surrounding arterioles in the SVP.35

In the SVP, a proportion α of arterioles and venules and all
terminal vessels within the macula are connected to the near-
est capillary. Because of the lack of specific data, α was arbi-
trarily set to 40% in all simulations unless specified other-
wise.

Interplexi connections are subject to debate.18,35,45

Because the ICP and DCP are modeled in the macula only,
interplexi connections are based on the findings by An et
al.35 in the parafovea. Specifically, arterioles and venules
within the macular area of the SVP bifurcate to the ICP,
and those branches immediately bifurcate to the DCP. This
corresponds to the most prevalent patterns in the histology
study.35 From the SVP, 30% of the arterioles and venules were
selected for bifurcation to the ICP, and the bifurcation points
were added in the middle of the selected vessels.

All capillary segments are initially given the same radius
(rcapillary) unless they are connected to an arteriole or venule,
in which case their initial radius is twice that of other capil-
laries. Diameter transitions at bifurcations are smoothed
using the method proposed by Linninger et al.25 In short,
the diameter of a segment becomes the average of the diam-
eters of itself and of the parent and daughter branches.

When all vascular segments have been assigned a radius,
the last necessary step for hemodynamics simulation is to
find the flow direction in the capillary network created
by the Voronoi diagram. This can be achieved by using
the diffusion equation. Representing the vasculature as a
graph, values are assigned to nodes: 1 for arterial nodes, 0
for venous nodes, and 0.5 for capillary nodes. The graph
Laplacian of the vasculature is used to update the nodal
values, creating gradients along edges (vessel segments).
These gradients provide an ordering of the capillaries, from
high to low value, which ensures that the graph stays acyclic,
which is a necessary condition for hemodynamics simula-
tions.

Hemodynamics Model

Blood is modeled as an incompressible, Newtonian fluid
flowing in a network of connected tubes by the Hagen–
Poiseuille equation. This modeling framework considers the
vasculature as an arrangement of connected, straight tubes
(see the example shown in Fig. 2A), across which pressure
drop �p, vascular resistance R, and volumetric blood flow
Q are related by

Q = �p

R
. (5)

Vascular resistance is a function of tube radius r, length
l, and blood viscosity μ, as follows:

R = 8μl

πr4
. (6)

Blood is a non-Newtonian fluid and is subject to the
Fåhræus–Lindqvist effect46 in the microcirculation. Non-
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FIGURE 2. (A) A visualization of one generated vasculature. The hemodynamics simulations use blood pressure at the CRA and CRV as
inputs. Outside the macula, terminal arteries are linked to a compartment through an artificial resistance R which redistributes the flow to
terminal veins through connections with the same resistance R.. In the macula, capillaries connect arteries to veins across three vascular
plexi. (B) Zoomed-in view of the dense macular region from A. (C) En face view of the generated SVP in the temporal region and the macula
(zoomed-in inset).

Newtonian effects are accounted for by a diameter- and
hematocrit-dependent, empirical, effective viscosity law47:

μ(D) =
[
1 + (μ0.45 − 1)

(1 −HD )C − 1

(1 − 0.45)C − 1

(
D

D − 1.1

)2
] (

D

D − 1.1

)2

, (7)

where D is the vessel diameter in microns and HD is the
discharge hematocrit:

μ0.45 = 6e−0.085D + 3.2 − 2.44e−0.06D0.645
, (8)

and

C = (
0.8 + e−0.075D

) (
−1 + (

1 + 10−11D12
)−1

)
+ (

1 + 10−11D12
)−1

, (9)

the discharge hematocrit is kept constant at 45% in this
work. Considering the relatively small caliber of retinal
vessels, Equations 5 to 9 apply to the entire vasculature.47

In the macular area, the vasculature is fully connected,
with arterioles connecting to venules through capillaries;
therefore, no boundary conditions are needed. Outside
the macula, however, the first stage of the CCO algo-
rithm detailed earlier leaves terminal vessels with no further
branches on the arterial and venous sides. This happens
as a result of not generating the full extent of the periph-
eral vasculature. To close the vascular network, these termi-
nal vessels must somehow be linked to the CRA/CRV, or

hemodynamics in those vessels need to be explicitly given
as boundary conditions of the model. In the absence of
adequate data on hemodynamics for those vessels, we chose
to instead link the terminal vessels through a compartment,
as shown in Figure 2A. This avoids the need for boundary
conditions. All terminal arteries outflow into the compart-
ment through artificial vessels with a resistance R. All termi-
nal veins drain the vascular compartment through artificial
vessels with the same resistance. For baseline simulations,
R = 1 × 106 mmHg s/mL was selected such that the hemo-
dynamic parameters’ distribution across the vasculature is
similar to experimental data.19,48

Validation Metrics

Six morphological metrics were used for comparison with
OCTA:

• Four of the indices proposed by Chu et al.2: vessel area
density (VAD), vessel skeleton density (VSD), vessel
diameter index (VDI), and vessel complexity index
(VCI), computed according to Equation 10

• Fractal dimension (FD), computed with a box-counting
method4

• Intervessel distance (IVD), computed with Euclidean
distance transform.52

Only VAD and FD were used in the ICP and DCP.
For each plexus, VAD was used in the model develop-

ment stage to determine appropriate values for two of the
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hyperparameters: Nterms and Nseeds (see Table 1). Both IVD
and FD require skeletonized, pixelized images of the vascu-
lature to be computed. To create those, generated macular
vessels are mapped to a white canvas, then saved as binary
images.

The Euclidean distance transform was used to compute
IVD, and a box counting method was used to estimate FD.
The remaining metrics were computed from the cumulated
length (L = ∑

i∈V li) and cross-section area of vessels (A =∑
i∈V 2rili) within a given plexus and inside a field of view

of area X as follows:

VAD = A
X , V SD = L

X , VDI = A
L , VCI = (2L)2

4πA . (10)

These metrics have been proposed as proxies for the average
caliber, length, and overall complexity and quality of the
vasculature on an OCTA.2

Vessels are assigned a stream order, or Horton–Strahler
order. In brief, capillaries are assigned an order of 0, and
then, moving upstream for arteries or downstream for veins,
the orders are assigned as follows35:

• If the vessel has one branch of order i and all other
branches are of order less than i, then the order of the
vessel is i

• If the vessel has two or more branches of order i and i
is the largest order among the branches, then the order
of the vessel is i + 1.

From the hemodynamics simulations, two variables were
extracted to quantify macular perfusion: retinal blood flow,
defined as the volumetric flow rate of blood entering the
retina, and themacular flow fraction, defined as the percent-
age of retinal blood flow entering the macula. Spearman
correlation coefficients were calculated for both hemody-
namics variables and against each morphological metric. We
derived 95% confidence intervals (CIs) using bootstrapping
(N = 1000).

Sensitivity Analysis

The method presented in this work relies on several hyper-
parameters. Those parameters are described below and
in Table 1 and in more detail in Talou et al.26 for CCO
algorithm–specific parameters. The values for these parame-
ters either are unknown (e.g., Nterms) or are subject to uncer-
tainty in their measurement (e.g., δ, γ ). We performed a
variance-based sensitivity analysis to decompose the vari-
ance in the output of the model (Var[Y]). Sobol indices
summarize the importance of sets of inputs Xi with indices
between 0 and 1.53 In this work, we report first (Si) and total
(STi) order indices, which are often enough to understand
parameter importance.53 In short, Si quantifies the contribu-
tion of Xi alone, and the STi quantify its total contribution—
namely, its first-order contribution plus all the higher order
contributions.53 Further details can be found in the Supple-
mentary Material.

Uncertainty Quantification

Uncertainty quantification aims at assessing the credibility of
the prediction of a model.54,55 For the hemodynamics model,
uncertainty stems from two parameters: OPP (Equation 3)
and R. To quantify the uncertainty brought on by the corre-

lation coefficients, the same experiment was reproduced for
45 different scenarios where

• The resistance parameter R was set to 5 × 105 mmHg
s/mL, 1 × 106 mmHg s/mL, and 5 × 106 mmHg s/mL.

• OPP was set to 80%, 100%, and 120% of its baseline
value

• The fraction α was varied between 0.2 and 0.6 by incre-
ments of 0.1.

RESULTS

A virtual population of 200 healthy vasculatures was gener-
ated. The population parameters were sampled from normal
distributions as specified in the “Population Parameters”
section of Table 1. All other parameters were kept at their
baseline values, given in Table 1. Hemodynamics simula-
tions were performed for each virtual vasculature using the
virtual individual’s OPP. The mean ± SD for OPP was 45.2
± 4.2 mmHg (range, 32.83–56.0). The parameter vCRA was
not used in the hemodynamics simulations.

Validation of the Network Structure and
Hemodynamics

The morphology of the macula, within a disk of diame-
ter 3 mm centered at the fovea, is compared to literature
values of the same parameters computed on OCTAs2,4,52 in
Figure 3.

Figure 4 shows vessel diameters for each stream order in
the macula. The distribution is similar to histological data.35

Mean diameters were smaller in the model but lay within the
reported ranges for each order. The ratio of average arteriole
diameter to average venule diameter increased from 0.92 ±
0.09 in order 5 vessels to 0.95 ± 0.05 in order 1 vessels. For
all orders combined, the ratio was 0.937 ± 0.031, which is
consistent with experimental measurements of 0.9 ± 0.1.40

From the hemodynamics simulations, the means ± SD
for retinal blood flow, blood velocity in the CRA, and macu-
lar flow fraction were 20.80 ± 7.86 μL/min (range, 5.01–
60.45), 1.62 ± 0.30 cm/s (range, 0.87–2.6), and 15.04%
± 5.42% (range, 4.92–32.74). On average, retinal blood
flow in the model was lower compared to experimental
studies that have reported means of 30 to 40 μL/min.19,48

Blood velocity in the CRA was also lower in the model
compared to the average of 6.3 cm/s reported by exper-
imental work.49 Figure 5A compares blood velocity along
the vasculature with experimental studies.19,48 Addition-
ally, these studies reported volumetric blood flow rates
against diameter. These distributions are compared with
those of the model in Figure 5B. In the venous circula-
tion, model predictions of flow and velocity were consis-
tent with experimental data. On the arterial side, both veloc-
ity and flow were visually lower compared to the same
studies.

Four Structural Variables Are Strongly Linked to
Retinal Function

We next look to understand how the morphology of the
macular vasculature affects the hemodynamics of the retina
and of the macula using our model. Figure 6 shows the
Spearman correlation coefficients for each variable. Verti-
cal lines show the threshold typically used for a correla-
tion to be considered moderate (dotted lines) and strong
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FIGURE 3. Comparison of the morphology of virtual vasculatures in the macula against OCTA measurements. Dots show the mean value
reported by independent studies (VAD56, VSD56, VDI57, IVD52, FD458 in the SVP; VAD59, FD458 for the ICP and DCP) for healthy eyes. Model
values are shown as box and whisker plots. Whiskers extend to the minimum and maximum within 1.5 times the interquartile range. Unless
otherwise specified, the metrics relate to the SVP.

FIGURE 4. Box-and-whisker plot of the diameter of virtual vessels in the macula for each Horton–Strahler order. On average, close to 5000
vessel segments were analyzed for each vasculature. Whiskers extend to the minimum and maximum within 1.5 times the interquartile
range. For comparison, lines show the mean (solid line) and quartiles (dashed lines) from experimental data.35

(dashed lines). For the healthy virtual cohort, the model
found only VAD, VDI, VCI, and FD of the SVP to be predic-
tors of retinal blood flow. The correlations with the macu-
lar flow fraction were all below 0.25, showing weak or no
correlations.

Sensitivity Analysis and Uncertainty
Quantification

Minimum Branching Angle Dominates Struc-
tural Variability. Figure 7A shows the Sobol indices
for 10 hyperparameters computed with the Python library
SALib60,61 using around 11,000 simulations. The parame-
ters were sampled uniformly within the ranges presented
in Table 2 using the algorithm developed by Saltelli.62

For most metrics, all parameters share a similar total
order and small first order. Notably, θmin stands out as the
most influential overall, explaining around 50% of the vari-
ance in FD and most of the variance in VSD (Si = STi
≈ 1) by itself. Other parameters of interest include Nseeds

for the SVP, Nterms or the second stage of the CCO algo-
rithm, and, to a lesser extent, lfr. These results indicate
that those four parameters are enough to produce a virtual
population with interpopulation variability, at least in the
SVP.

Macular Flow Fraction Is Independent of OPP.
The results presented earlier rely on several hypotheses and
parameters that introduce a degree of uncertainty. Across all
scenarios, the mean total retinal blood flow varied between
–30.0% and 38.3% of baseline values, and the macular flow
fraction varied between –47.1% and 12.9%. The results for
the nine scenarios where α was kept at its baseline value
are shown in Supplementary Table S1. Variation in OPP had
almost no effects on macular flow fraction (Pearson’s r2 <

10–3 for all values of R) but was linearly correlated with total
retinal blood flow (r2 > 0.89 for all values of R). The coeffi-
cients are given for those nine scenarios in Supplementary
Table S2. Parameter α was not correlated with either of the
hemodynamic variables (r2 < 10–2 for all variations of OPP
and R).
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FIGURE 5. Blood velocity (A) and volumetric blood flow rate (B) distributions against vessel diameter in the virtual vasculatures compared
with two independent experimental studies.19,48 Blood vessels from the simulations are binned into hexagons. Color maps show the prob-
ability density across the 200 virtual individuals.

FIGURE 6. Spearman correlation coefficients testing for monotonous correlations between morphology and hemodynamics of the macular
vessels. Values closer to 1 or –1 indicate stronger correlations. The 95% CIs were estimated using bootstrapping.

DISCUSSION

A virtual cohort of 200 healthy patients was generated and
analyzed. The generated vasculature showed good agree-

ment, structurally, with experimental and clinical measure-
ments. The hemodynamics model showed good qualitative
and quantitative agreement with two independent exper-
imental studies. The model predicted strong associations
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FIGURE 7. Results of the global sensitivity analysis. (A) The bars show the first-order (Si) and total-order (STi) Sobol indices for each
hyperparameter of the method with respect to each morphological metric of the superficial vascular plexus. The error bars show the 95%
CIs for the indices. (B) Convergence of the indices was checked by plotting the values of the indices with an increasing number of simulations
used for their computation.

TABLE 2. Ranges for the Hyperparameters for the Computation of Sobol Indices

Nterms Stage 2 Nterms Stage 3 lfr δ η γ v θmin fn Nseeds SVP

[300, 500] [200, 400] [0.1, 0.9] [0.1, 0.9] [0.2, 0.5] [0.2, 0.5] [2, 3] [0, 72] [0, 5] [300, 700]

between several microvascular parameters and total retinal
blood flow.

Validation

We validated the models against experimental data. The
morphology of the SVP was within the ranges of values
found in the literature for healthy retinas, as quantified by
OCTA.2,4,52,56,58 In the ICP and DCP, VAD was very close to
values reported in a histology study,59 but IVD was larger
in both plexuses compared to OCTA data.52 This was more
marked in the ICP compared to the DCP. The morphol-
ogy of the microcirculation delineated on OCTA is sensi-

tive to several factors, including scan postprocessing56,57 and
segmentation of the different plexuses, which makes direct
comparison complicated.

The morphology of the ICP and DCP vasculature was very
homogeneous across the generated cohort, as indicated by
the small standard deviations in Figure 3. As demonstrated
in the SVC by the sensitivity analysis, this may be resolved
by varying Nseeds, although reasonable bounds need to be
defined.

Figure 4 shows that the distribution by the model of diam-
eters across Horton–Strahler order was similar to a histolog-
ical study.35 However, capillaries were smaller in our model
compared to the data. In the study by An et al.,35 capillar-
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ies were any vessel with diameter smaller than 8 μm. In our
model, capillaries were assigned a diameter of 5 μm or 10
μm if they were directly connected to an arteriole or venule.
This strategy may be too simplistic to represent the spread of
diameters in the vascular bed. Others have suggested updat-
ing the diameter of vessels based on blood pressure from
a first hemodynamics simulation.25 More in-depth analysis
of the capillary beds is necessary in order to develop an
appropriate strategy. In the meantime, sensitivity analysis
and uncertainty quantification can help improve the relia-
bility of the model.

Figure 5 shows that the predictions by the model of blood
velocity and flow across the vasculature were consistent with
experimental data. However, for the arterial circulation, both
flow and velocity were slightly lower in the model.19,48 Simi-
larly, blood flow and velocity in the CRA were both lower in
the model compared to experimental data.19,48,49,63 As seen
in Equations 5 and 6, blood flow and velocity are respec-
tively proportional to the fourth and second power of vessel
radius. Therefore, an increase in radius by a factor of

√
2

≈ 1.4 for velocity and 4
√
2 ≈ 1.18 for flow would be suffi-

cient to double the predictions of the model. It is unclear
whether vessel diameter measurement in experimental stud-
ies19,48 has included the vessel wall in the measurement.
We assumed that the diameters were those of vessel lumen,
which could lead to an overestimate of lumen radii between
20% and 35% for larger temporal arteries.64–66 In experimen-
tal studies, the same relation between flow and radius is
assumed, and blood flow is estimated from velocity v and
diameter D measurements as Q = vπD2/4. Therefore, even a
small measurement error in vessel diameter combined with
error in measurement in velocity still results in large devia-
tions from the true blood flow. Both measurements are chal-
lenging and prone to errors.67 To test this hypothesis, we
reduced by 20% the lumen diameter of arteries larger than
100 μm in diameter and ran the hemodynamics simulations
for the entire population. The velocity and flow distributions
for this experiment are provided in Supplementary Figure S1
and show improved agreement with the experimental data.
In addition, all parameters in our virtual populations were
sampled from independent normal distributions, which is
likely an incorrect assumption as, for example, vessel diam-
eter is likely to be correlated with arterial pressure and
IOP.68 As discussed by Doblhoff-Dier et al.,19 studies have
reported average total retinal blood flow ranging from 30 to
80 μL/min.19,48,63 Despite the uncertainty in measurements,
most studies seem to agree on values in healthy eyes of
around 30 to 40 μL/min.19,48 Despite the difference in hemo-
dynamics in the CRA, Figure 5 shows that the discrepancy
with experimental data is reduced as the vessels branch out.
Similar to the study by Doblhoff-Dier et al.,19 blood veloc-
ity seems to scale linearly with diameter for larger vessels,
but this trend is lost in smaller vessels. The overall lower
blood velocity can be attributed, as discussed above, to the
discrepancy in velocity in the CRA.

The simulations found that macular flow fraction was
between 2.51% and 11.54%; however, to best of our knowl-
edge, there are no data to validate these values. The macula
has twice the density of cells compared to the rest of the
retina.42 Assuming that regions of higher cell density require
similarly higher blood flow, it can be estimated that the
macula requires 15% to 30% of the total retinal blood flow,
although these are rough estimates.

We quantified the effects of the two parameters of the
hemodynamics model on total retinal blood flow and macu-

lar flow fraction. Increasing R is similar to gradually closing
the connections to/from the vascular compartment; there-
fore, flow is shunted toward the macula, and macular flow
fraction increases. Decreasing R has an opposite effect.
However, the macular flow fraction will eventually reach
a plateau when the CRA reaches its maximum capacity in
terms of blood flow: Regardless of the resistance of paths
outside the macula, blood will flow through the macula, and
total retinal blood flow is bounded by physical constraints.
Indeed, in our model, for a given OPP, flow in the CRA
is theoretically bounded by the radius and length of the
CRA according to Equation 5. The same effect explains the
non-symmetrical changes in total retinal blood flow as R is
decreased (see Supplementary Fig. S2).

Associations Between Vascular Structure and
Function

Analysis of the 200 virtual vasculatures revealed associa-
tions between several of the morphological metrics and total
retinal blood flow. Larger VAD, VDI, and FD in the SVP
were strongly associated with larger retinal blood flow. In
contrast, larger VCI in the SVP was strongly correlated with
smaller retinal blood flow. Interestingly, VAD in the ICP
showed a moderate positive correlation with retinal blood
flow. However, VAD in the DCP and in the combined ICP–
DCP complex, as well as FD in the ICP–DCP complex, did
not show any significant correlations. None of the tested
metrics was significantly associated with the fraction of flow
transiting through the macula. Uncertainty quantification
showed that those results were independent of the parame-
ters of the hemodynamics model. As shown in Supplemen-
tary Figures S3 and S4, varying OPP, R, and α does not have
any effect on the Spearman correlation coefficients.

The correlation coefficients between morphological
metrics and hemodynamics were obtained from one-to-one
comparisons and therefore do not capture possible inter-
play between morphological metrics. Additional analysis is
required to better understand which metrics or combination
of metrics are strong predictors of blood flow.

Developing VPs With a Smaller Parameter Space

We have presented the results of a global sensitivity analysis
of the hyperparameters of our method on the morphology
of the vasculature in the SVP. The results are presented as
first-order and total-order Sobol indices for 10 inputs and six
outputs in Figure 7A. These indices were extracted from a
large number of simulations in order to ensure convergence,
which was reached with around 8000 simulations, as seen
in Figure 7B.

The total-order indices were globally similar for all
parameters and added little explanation to the importance of
parameters. Computing second-order indices may be neces-
sary to reduce the number of parameters before attempt-
ing to generate a different population or to pursue uncer-
tainty quantification. However, second-order indices require
a larger number of simulations to achieve convergence
with Monte Carlo methods and are therefore expensive to
compute.53 In this case, developing a surrogate model (e.g.,
polynomial chaos expansion) might be required.53 Nonethe-
less, the first-order and total-order indices suggest that the
parameter space can be reduced to as little as four param-
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eters, depending on which morphological metric is deemed
more important.

Interestingly, θmin appeared to be the most influential
parameter. In particular, it was the sole parameter influenc-
ing VSD. This result supports the hypothesis by Xao et al.30

that branch geometry is correlated with the vessel perimeter
index, which would be twice VSD when computed on artifi-
cial vessels. The associations between vascular structure and
hemodynamics should be investigated further, perhaps with
spatial metrics that can be compared with OCTA measure-
ments.30

Limitations

Our method has several limitations that should be acknowl-
edged. We did not model the peripapillary capillary plexus,
ignored the curvature of the retina, and assumed a unique
interplexus connection pattern. We also assumed that each
plexus lay in a two-dimensional plane. Additionally, direct
connections between arterioles/venules and capillaries in
the SVP were added with a likelihood α, which ignores phys-
iological behaviors. Similarly, the likelihood of an arteriole
or venule of bifurcating to the deeper layers was also arbi-
trarily set to 30%. The validity of these two assumptions has
yet to be evaluated.

The effects of uncertainty in measurements (i.e., MAP,
IOP, rCRA, and vCRA) on the generated vasculature remain to
be quantified. The number of hyperparameters is large, and
global sensitivity analysis has shown that their effects on
vascular metrics are non-local. Therefore, directly adapting
the method to generate different virtual populations may
prove challenging. Indeed, as stated by Allen et al.,69 effi-
cient generation of virtual populations requires knowledge
of plausible ranges for the model parameters and optimizing
over the set of model parameters. Reducing the number of
parameters to the most influential ones appears necessary,
and the sensitivity analysis presented in this study is a first
step toward this goal.

At this stage, we have not considered the joint distribu-
tion of the population parameters rCRA, MAP, IOP, and vCRA.
These are likely to be strongly related, and ignoring these
associations may create discrepancies in the output of our
model when compared to experimental data. However, these
joint distributions are not readily available, to the best of our
knowledge, but might be inferred from different studies in
the future.

The hemodynamics model proposed in this study makes
several simplifying assumptions. In particular, plasma skim-
ming effects, which lead to non-constant hematocrit, and
non-Newtonian effects, are important aspects of the hemo-
dynamics in the microcirculation but were not incorporated
in this model.46,47 Additionally, we assumed that there were
no lateral connections between the ICP and DCP and the
circulation outside the macula. This is similar to assuming
that both plexi are connected in series with the SVP, which is
now known to be only partially correct.35 Finally, the param-
eter R introduced in this model remains unknown, and its
value was based on simple computation of the estimated
macular blood flow. Also, uncertainty quantification showed
that this parameter had a strong effect on the fraction of flow
going to the macula. However, it had limited effect on the
total retinal blood flow (at most 30% of variation compared
to baseline for R varying over an order of magnitude). In
future work, its influence on other hemodynamics measure-
ments should be thoroughly evaluated.

Applications

In future work, the validated virtual populations presented
here will be used to model intra- and extravascular oxygen
transport. Disease populations such as diabetic retinopathy
or age-related macular degeneration, where OCTA indices
have been reported to be affected by the disease, can also be
generated by using population-specific distributions for the
population parameters listed in Table 1 and/or by varying
hyperparameters, such as θmin, which, according to the sensi-
tivity analysis results presented earlier, can affect microvas-
cular morphology. Additional mechanisms that may have
importance in disease, such as autoregulation21,43 or plasma
skimming,70 can easily be added to the current model.
For example, autoregulation may be negatively affected
by diabetes,71 while simultaneously asymmetric branching
causes heterogeneous distribution of oxygen due to plasma
skimming. This way, our model can be used to understand
the relationship between microvasculature and pathologi-
cal angiogenesis, a symptom of several blinding diseases,11

and provides a framework to build upon to achieve patient-
specific treatment simulations.

CONCLUSIONS

Although macular microvascular parameters serve as potent
disease biomarkers, their relationship with retinal perfu-
sion remains ambiguous. Our method establishes a versa-
tile framework for exploring the interplay between retinal
vascular structure and function. Designed to generate virtual
populations from just four parameters and various quantita-
tive OCTA-based measurements, the method can be adapted
to different populations.

In our study, the model generated a population of
healthy eyes, revealing robust connections between macu-
lar morphology and total retinal blood flow, independent of
model parameters. The initially large hyperparameter space
is effectively reduced to four hyperparameters for precise
population generation.

In future work, diverse virtual populations will be created
to assess model predictions in diseased maculas. This
approach, complemented with hemodynamics and oxygen
modeling, takes an essential step toward understanding the
significance of vascular imaging biomarkers and their rela-
tion to retinal diseases.
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