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PURPOSE. Thyroid eye disease (TED) is characterized by proliferation of orbital tissues
and complicated by compressive optic neuropathy (CON). This study aims to utilize a
deep-learning (DL)-based automated segmentation model to segment orbital muscle and
fat volumes on computed tomography (CT) images and provide quantitative volumetric
data and a machine learning (ML)-based classifier to distinguish between TED and TED
with CON.

METHODS. Subjects with TED who underwent clinical evaluation and orbital CT imaging
were included. Patients with clinical features of CON were classified as having severe
TED, and those without were classified as having mild TED. Normal subjects were used
for controls. A U-Net DL-model was used for automatic segmentation of orbital muscle
and fat volumes from orbital CTs, and ensemble of Random Forest Classifiers were used
for volumetric analysis of muscle and fat.

RESULTS. Two hundred eighty-one subjects were included in this study. Automatic segmen-
tation of orbital tissues was performed. Dice coefficient was recorded to be 0.902 and
0.921 for muscle and fat volumes, respectively. Muscle volumes among normal, mild,
and severe TED were found to be statistically different. A classification model utilizing
volume data and limited patient data had an accuracy of 0.838 and an area under the
curve (AUC) of 0.929 in predicting normal, mild TED, and severe TED.

CONCLUSIONS. DL-based automated segmentation of orbital images for patients with TED
was found to be accurate and efficient. An ML-based classification model using volumet-
rics and metadata led to high diagnostic accuracy in distinguishing TED and TED with
CON. By enabling rapid and precise volumetric assessment, this may be a useful tool in
future clinical studies.
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Thyroid eye disease (TED) is a heterogeneous autoim-
mune condition that can have a varied presentation. TED

can be disfiguring, and early detection can be critical to avoid
permanent vision loss. Due to aberrant signaling and overac-
tivation of thyroid stimulating hormone receptor and insulin-
like growth factor-1 pathways in TED, there is abnormal
growth and uncontrolled proliferation of orbital tissues.1–4

TED signs and symptoms, such as extraocular motility limi-
tation and proptosis, are consequences to changes in the
orbital fat and muscles, but diagnosis may be delayed due to
its varied and nonspecific presenting symptoms. When the
expansion of these tissues is severe, there may be vision-
threatening complications, like compressive optic neuropa-
thy (CON). Management and treatment strategies aim to

alleviate symptoms, manage inflammation and disfigure-
ment, and, in severe cases, prevent or address CON.
However, identification of patients at risk for serious seque-
lae to achieve urgent triage to an oculoplastic surgeon is
critical.

Volumetric segmentation is frequently utilized in radio-
therapy for assessment of targeted organs and anatomic
structures throughout the body. Automated segmentation of
radiographic images has been a rapidly expanding field in
the last decade to reduce the time and variability associ-
ated with manual segmentation utilizing techniques based
on multi-atlas algorithms. Recently, deep learning (DL) has
broadened the applicability of auto-segmentation and has
allowed for broader generalization of new data.5 For TED,
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the quantification of orbital muscle and fat volumes in
TED have been explored and volumetric based studies have
helped better understand disease pathophysiology, corre-
sponding clinical features, and response to therapies.6–24

However, many of these studies depend on manual segmen-
tation for demarcation of orbital tissues of interest, which
is time and labor intensive.11,13,14,25 Alternatively, they may
involve the utilization of commercial or open-source soft-
ware packages, many of which are programed based on
normal orbital scans and may have less generalizability to
patients with TED6,8,12,16,18–21 or may still require some
manual segmentation. Orbital imaging of TED poses a
unique challenge for segmentation and volumetric analysis
due to a relatively small target organ, the irregular expan-
sion of the orbital muscles and fat, and the apical crowding
within the bony orbit.

This study aims to introduce a DL-based fully automated
approach for the segmentation of orbital muscle and fat, and
subsequent quantitative volume measurement using orbital
computed tomography (CT) scans in patients with TED and
TED with CON. This study also aims to utilize this volumet-
ric data in a DL-based classification model and integrates
patient-specific data in conjunction with the image data for
optimized classification.

METHODS

Study Design

A retrospective cohort study was performed at
Massachusetts Eye and Ear (MEE), a tertiary ophthalmic
institution, over a 12-year period (August 2011 to 2023). The
Massachusetts General Brigham (MGB) institutional review

board approved this retrospective study, and the written
informed consent was waived. The study was conducted
following the ethical standards outlined in the Declaration
of Helsinki and conducted in compliance with the Health
Insurance Portability and Accountability Act.

Subject identification methods were previously
described.26 Subjects were included if they were 18 years of
age or older with a dedicated CT scan of the orbit who had
also undergone a clinical examination by an oculoplastic
surgeon within a 3-month period of the scan. Patients with
a clinical diagnosis of TED were included. Patients with no
TED or other orbital conditions who underwent CT orbits
were included as normal controls. Patients were excluded if
they had another orbital diagnosis, such as orbital tumors,
fractures, or other inflammatory processes, and patients
with any prior orbital surgery (e.g. orbital decompressions).

A multi-faceted approach to the DL algorithm was
constructed, with an overview of the study methodology
presented in Figure 1. First, the region of interest (ROI) was
extracted (see Fig. 1, stage 1) from the orbital CTs, with
details on methodology to follow. DL-based segmentation
was then performed to segment muscle and fat volumes of
each orbit (see Fig. 1, stage 2). Calculation of orbital muscle
and orbital fat volumes were then performed. Then, the volu-
metric data was processed in synergy with patient meta-
data through a DL-based classifier to predict the presence
of normal, mild TED, or severe TED (see Fig. 1, stage 3).

Data Preprocessing

Patient Metadata Collection and Categorization.
Patient demographics, clinical history, smoking status, ancil-
lary testing, and oculoplastic surgeon’s clinical examination

FIGURE 1. Overview of the proposed DL volumetric analysis methodology. In stage 1, the input whole CT scan is automatically cropped to
extract right and left orbits. In stage 2, DL-based automated segmentation of the muscle and fat volumes in each orbit is performed and the
volumes of each are subsequently calculated. In stage 3, the volumetric data is integrated with various patient metadata into an ML-based
classifier which is used to diagnosis the patient with normal, mild TED, or severe TED.
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closest in time to the CT were abstracted from the elec-
tronic medical record. Based on retrospective chart review,
patients were categorized into three groups: normal patients,
patients with mild TED (no optic neuropathy), and patients
with severe TED (with optic neuropathy), as previously
described.26 Patients with severe TED were considered to
have any signs of compressive optic neuropathy, including
any one of the following: dyschromatopsia, Humphrey visual
field (VF) changes in patterns consistent with TED, relative
afferent pupillary defect, and/or optic nerve head changes.27

Optic nerve head changes were identified on direct fundo-
scopic examination and including optic, and documented if
there was any blurring of disc margins, disc edema, or disc
pallor. These clinical categories were deemed the ground
truth for model training.

Computed Tomography Data (CT Scans) Prepro-
cessing. Orbital CTs from selected subjects were obtained.
The slice thickness of the scans was 0.625 mm, and the
pixel dimensions were 512 × 512 pixels. To maximize the
clarity of the orbit, the image volume was clipped to 1000
pixels window level and 350 pixels window width. After
this windowing process, each individual orbit (right and left
orbit) was cropped to a 140 × 140 × 140-pixel volume.
The right and left orbits of each CT scan were cropped by
a fixed-size ROI. The orbital structures were not affected
by the slight shifts in the ROI positions because all CT
scans had the same pixel dimensions (512 × 512 pixels).
This proof-of-concept model did not create a general crop-
ping method that could handle different CT scan sizes and
offsets. The cropped volumes of a subset of images were
then manually segmented by experienced radiologists utiliz-
ing FIJI software and Labkit.28,29 The manual segmentations
of these orbits were performed to establish the ground truth
for subsequent model training. The total number of manu-
ally segmented slices was 4200, which was split into three
sets: training (3360), validation (420), and testing (420). The
obtained segmentation masks of orbital muscles and fat were
stored separately for model training. The dataset was divided
into training, validation, and test sets, with the allocation
ratios being 80%, 10%, and 10%, respectively.

Model Development

Orbital Volume Segmentation Model. A 2D U-
Net30 model was utilized for segmentation tasks. The
adapted U-Net architecture featured an encoder-decoder

design, with the encoder module utilizing a pretrained
VGG16 model31 for feature extraction from the processed
CT volumes. The decoder module comprised an equiva-
lent number of layers. During the training process, a learn-
ing rate of 1e-4 and a batch size of 4 were applied over
100 epochs, utilizing the cross-entropy loss function. To
enhance dataset diversity and enhance the model’s overall
performance, normalization and resizing transforms were
implemented as augmentation techniques during training.
The following augmentation techniques were used: (a) rota-
tion (limit = 50 degrees, probability = 1.0), (b) horizon-
tal flip (probability = 0.5), and (c) vertical flip (probabil-
ity = 0.5). Slices were then resized to 160 × 160 pixels for
the purpose of training as the library “Segmentation Models
Pytorch” (https://github.com/qubvel/segmentation_models.
pytorch) required image height and width to be multiples
of 32. The Dice Similarity Coefficient (DSC) was used as a
metric to assess the model’s accuracy, calculated through the
following formula (Equation 1: (A,B) = 2(A∩B)

(A+B) ). The output
of the segmentation model includes both a 3-dimensional
(3D) volumetric model as well as quantifications of the
muscle volumes and fat volumes for each orbit. To assess
the performance of the segmentation models, the model was
applied to the test set data. A Monte Carlo five-fold cross-
validation with data randomly shuffled was performed. The
averaged DSC was then calculated.

We applied a post-processing step to resize the predicted
masks back to their original 140 × 140 pixel dimensions
to ensure accurate volume calculation. The muscle and fat
volumes were calculated for each orbit by multiplying voxel
volume (dx,.dy, and.dz) by the predicted mask area (nmask)
for each slice in the volume (Equation 2: V3D = nmask ·
(dx · dy · dz)) and then compared for each classification
(normal, mild TED, and severe TED) as well as subclassifica-
tion based on male and female gender. Statistical comparison
on outcomes was performed with 1-way ANOVA testing.

TED Classification Model. After the volumes were
automatically segmented, an ML-based model was devel-
oped for classification of the images. The classification
model utilized a Random Forest model design to classify
among the three groups (normal, mild TED, and severe
TED). The classification approach is represented in Figure 2.
The input for the model was the predicted orbital muscle and
orbital fat volumes obtained from the segmentation model.
The input was then run through the ML-based classifier,
which predicts the probability of each image belonging to
each class in a binary fashion (i.e. normal versus not normal,

FIGURE 2. TED classification methodology. Three binary models, one for each class, was implemented. Each model outputs the estimated
probability that the instance belongs to the corresponding class, and then the voting module decides the final class of the input instance
based on these probabilities, ultimately predicting the diagnosis.
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mild TED versus not mild TED, and severe TED versus not
severe TED). Finally, the output of the three binary models
is combined into a voting scheme, which predicts the final
classification of each case (normal versus mild TED versus
severe TED).

This classification model was also re-run in synergy with
several different combinations of patient metadata, following
similar model structure as demonstrated in Figure 2. The aim
was to identify the minimal set of input variables to achieve
the highest accuracy of prediction and overall performance.
The initial classification model utilizing only volumetric
data was called model 1 (M1). The second model (M2)
only applied features from the patient’s metadata, includ-
ing demographic and clinical examination data as measured
by an oculoplastic surgeon. The third model (M3) utilized
all features from M1 and M2. The fourth model (M4) used
volumetrics and some patient metadata that could be easily
assessed without an oculoplastic examination (patient age,
gender, race, and smoking status). Supplementary Table S1
lists all input variables for the four models. The accuracy and
area under the curve (AUC) for all four model combinations
was calculated, with outcomes for each binary model (i.e.
normal versus not normal, mild TED versus not mild TED,
and severe TED versus not Severe TED) and the main model
(normal versus mild TED versus severe TED).

In order to pursue explainable artificial intelligence (AI)
outcomes, feature importance of the Random Forest clas-
sifiers was also performed. The features analyzed include
age, gender, race, smoking status, orbital muscle volumes,
orbital fat volumes, and total orbital volumes. The impu-
rity importance or the Gini importance32 of all the input
variables was calculated. Partial Dependence Plots (PDPs)33

were also used to inspect the independent effects of all the
input variables on the decisions of the classifiers.

RESULTS

Two hundred eighty-one (281) patients, totaling 562 individ-
ual orbits, were included in this study. The average age of
the patient was 55 years (range of 18-94 years), with 73%
female patients, and 64% White patients. Table 1 demon-
strates patient demographics.

Orbital Volume Segmentation Results and
Analysis

The orbital fat and muscle volume segmentation model
underwent training and was tested on 10% of the data.
Representative examples of the DL-based auto-segmentation
model results are shown in Figure 3 and the Supplementary
Figures S1–S3. The model successfully took an input image

of the CT orbit, identified, and segmented the muscle and
fat within the orbit, generated a 3D volumetric model, and
calculated the respective volumes of the muscle and fat of
each orbit for patients with normal, mild TED, and severe
TED.

The performance was cross-validated on the remaining
10% of the data using a 5-fold cross-validation with random
shuffling of the data. The DSC of the muscle volumes had
an average of 0.902 (0.882, 0.913, 0.906, 0.896, and 0.912 for
each round of cross-validation split, respectively). The DSC
of the fat volumes had an average of 0.921 (0.941, 0.922,
0.904, 0.924, and 0.908 for each round of cross-validation
split, respectively).

The volumes of the orbital fat and muscle were then
calculated based on the test dataset (28 patients). The
outcomes are presented in Table 2, and subanalyzed for
both male and female patients. The average orbital muscle
volume per male patient was 3.21 ± 0.95 cm3, 4.34 ± 1.39
cm3, and 5.42 ± 0.83 cm3 for normal, mild TED, and severe
TED, respectively. This was found to be statistically signifi-
cant (P value < 0.0003). The average orbital muscle volume
per female patient was 3.50 ± 0.47 cm3, 4.46 ± 1.29 cm3,
and 5.94 ± 2.19 cm3 for normal, mild TED, and severe TED,
respectively. This was also found to be statistically signifi-
cant (P value < 0.0003). Furthermore, the average orbital fat
volume per male patient among the three groups was found
to be statistically significant (P value < 0.003), but there was
no statistically significant difference in female patients.

TED Classification Results and Analysis

After the volumes of the muscle and fat of the orbit were
calculated for all the cases, the TED classification model was
used to classify each case into one of the three categories,
namely, normal versus mild TED versus severe TED, using
the composition of the three binary models (see Fig. 2). One
notable advantage of training the binary models indepen-
dently was that the strong class imbalance present in the
data could be easily mitigated. For example, when training
the binary model mild versus not mild, the not mild class
included both the normal and severe cases, and for the mild
class, only an equivalent number of cases were considered.
The same procedure was followed to train the other binary
models.

The data were divided into training, validation, and test-
ing with corresponding ratios of 0.6, 0.2, and 0.2, respec-
tively. The training and validation sets were used for hyper-
parameter optimization of the model, and the hyperparam-
eters of the best performing model were used to classify the
cases in the test set. The classification was performed on fat
and muscle volumes calculated for both eyes as an average
of the respective volumes for each patient.

TABLE 1. Patient Demographics

Normal Mild TED Severe TED Total

Total N participants (N orbits) 49 (98) 196 (392) 36 (72) 281 (562)
Age, y Median (range) 56 (18-94) 55 (18-89) 62 (28-90) 55 (18-94)
Gender, n (%) Male 19 (39%) 46 (23%) 10 (48%) 75 (27%)

Female 30 (61%) 150 (77%) 26 (72%) 206 (73%)
Race, n (%) White 33 (67%) 124 (63%) 24 (67%) 181 (64%)

Asian 1 (2%) 23 (12%) 3 (8%) 27 (10%)
Black 7 (14%) 17 (9%) 3 (8%) 27 (10%)
Other 8 (16%) 32 (16%) 6 (17%) 46 (16%)
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FIGURE 3. The segmentation of three randomly chosen orbits belonging to each category (normal, mild TED, and severe TED). The top row
displays the input image into the model. The middle row displays the DL-based segmentation. The yellow overlay indicates fat segmentation
and red overlay indicates muscle segmentation. The bottom row displays the 3D models created representing the muscle and fat volumes
for each orbit. The model then calculates the resulting muscle volume (MV) and fat volume (FV) for each orbit.

The accuracy and AUC over the test set of each varia-
tion of the model are as follows. The M1 model (volume
data only) had an accuracy of 0.720 and an AUC of 0.874

in predicting the main outcome between normal versus
mild TED versus severe TED. The M2 model (patient meta-
data only) had an accuracy of 0.795 and an AUC of 0.831
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TABLE 2. Orbital Muscle and Fat Volumes of Patients

Gender Orbital Tissue Normal (CM3) ± SD Mild TED (CM3) ± SD Severe TED (CM3) ± SD P Value

Male Muscle 3.21 ± 0.95 4.34 ± 1.39 5.42 ± 0.83 <0.0003
Fat 12.42 ± 3.8 15.7 ± 3.06 14.68 ± 1.97 <0.003

Female Muscle 3.50 ± 0.47 4.46 ± 1.29 5.94 ± 2.19 <0.0003
Fat 14.69 ± 2.82 15.01 ± 2.57 14.84 ± 2.78 0.83

Total Muscle 3.38 ± 0.72 4.43 ± 1.32 5.8 ± 1.94 0.0001
Fat 13.76 ± 3.44 15.18 ± 2.71 14.79 ± 2.59 0.02

SD, standard deviation of mean.
The P value was calculated by 1-way ANOVA.
Values represent the mean of the population of patients. Each patient is represented by the average of volumes of 2 orbits.
P values presented in bold face indicate statistical significance.

FIGURE 4. ROC curves for the binary models that compose the M4 model (volume data and limited patient data).

in predicting the main outcome. The M3 model (M1 and
M2 data combined) had an accuracy of 0.828 and an AUC
of 0.903 in predicting the main outcome. The M4 model
(volume data and limited patient data) had the highest accu-
racy of 0.838 and an AUC of 0.929 in predicting the main
outcome. The receiver operator curve (ROC) for the three
binary models in M4 is presented in Figure 4.

Random Forest models were performed to determine
feature importance for each classification and are presented
in Figure 5. The orbital muscle volume was the most
important feature (0.40 feature importance) for classifica-
tion between normal healthy patients and patients with
severe TED. For the mild TED cases, the most impor-

tant feature was orbital fat volume, followed closely by
orbital muscle volume, total orbital volume, and patient
age.

Further analysis on feature importance demonstrated that
muscle volume alone can nearly completely separate normal
and severe cases of TED. When the muscle volume was
approximately equal to or greater than 4.5 cm3, nearly all
cases were identified as severe TED (upper plot, Fig. 6).
When subanalyzed by gender, the muscle volume bound-
ary axis between normal and severe TED cases was differ-
ent for male and female patients compared to boundary axis
determined in all cases (see lower plots, Fig. 6). Additional
analysis for important features and metadata was not able

FIGURE 5. Feature (Gini) importance of the Random Forest classifiers for patients with normal, mild TED, and severe TED.
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FIGURE 6. Muscle volume as the most important feature to differentiate between normal and severe TED. The upper plot demonstrates
that muscle volume can linearly separate normal and severe cases in general. The lower left and right plots demonstrate the separation by
muscle volume when differentiating between female and male patients, respectively.

FIGURE 7. Partial dependence plot of the Random Forest classifier.

to identify a unique variable that had the same potential for
separating mild TED cases.

PDP were generated to determine the independent
effects of all input variables on the decisions of the classi-
fiers. Figure 7 demonstrates the PDP for each variable, with
the range of the variable (either numerical or categorical)
on the x-axis and the probability of classification of normal
versus mild TED versus severe TED on the y-axis. Muscle
volume is again demonstrated as the most important feature
to distinguish between normal and severe cases. As muscle
volume increases, the probability of severe cases increases
dramatically, and the probability of normal cases decreases.
Fat volume also demonstrated importance in the PDP, with
the probability of mild cases increasing with increased fat
volumes. Race and age did not appear to have an effect on
classification. This finding was supported by the analysis of
variance (ANOVA) test for muscle and fat volumes in normal

subjects among different races. The results showed that
muscle and fat volumes did not differ significantly among
different race groups (P = 0.7 and P = 0.85 for muscle and
fat, respectively).

DISCUSSION

This study presents a DL model that can automatically
segment the orbital muscle and fat volumes based on orbital
CTs. The volumetric data analysis found orbital muscle
volumes were significantly different with increasing volumes
among normal, mild TED, and severe TED. Additionally,
this study utilizes an ML-based classification model using
a combination of volumetric data and patient metadata. The
M4 model (volumetric data + limited patient data) was found
to be the most accurate in distinguishing among all three
categories (normal versus mild TED versus severe TED).
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The orbital volume segmentation model was able to
segment the orbital muscle and fat volumes accurately and
efficiently. When the model is used, it can obtain the volu-
metric data from the orbital CTs rapidly, with both segmen-
tation and quantitative volume results in approximately
30 seconds or less. It was also found to be highly accu-
rate in cross-validation, with an average DSC of 0.902 and
0.921 for muscle and fat volumes, respectively. The slightly
higher accuracy for the fat volume segmentation may be
attributed to the lower density of fat tissue in Hounsfield
Units compared to orbital muscle or globe, which may
allow for the model to distinguish the fat more easily from
surrounding tissues. The volumetric outcomes were suban-
alyzed by gender. The average orbital muscle volumes for
normal, mild TED, and severe TED, respectively, were found
to be 3.21 ± 0.95, 4.34 ± 1.39, and 5.42 ± 0.83 cm3 for male
patients and 3.50 ± 0.47, 4.46 ± 1.29, and 5.94 ± 2.19 cm3

for female patients, similar to values determined in other
studies.12,22

There was significant variation in muscle volumes across
the three categories (P < 0.0003), with a notable progressive
increase in volumes from normal healthy patients to patients
with mild and severe TED, in alignment with muscle volume
changes in other studies.7,9,20 In contrast, the average orbital
fat volumes were statistically significant for normal, mild
TED, and severe TED for male patients (P < 0.003), but not
for female patients. The fat volumes also did not progres-
sively increase, and the patients with mild TED trended
toward having higher fat volumes than patients with severe
TED.

There is variability in orbital fat and muscle volume in
the literature for “normal” orbits, likely driven by varia-
tions in age, gender, and ethnicity.18,34–37 Other investiga-
tions of orbital muscle and fat volumes in patients with TED
specifically have both a wide range of methodology and
results. Some investigations on orbital volumes were based
on manual segmentations of orbital imaging.11,13,14,22,25 In
1982, Feldon and Weiner provided some of the first quanti-
tative volumetric data based on manual tracings of orbital
tissues on CT for eight patients with TED.22 They simi-
larly found a regular increase in extraocular muscle volume
with worsening severity of TED. In 1982, a more automated
approach was developed utilizing region-growing and auto-
matic tracing algorithms as early attempts to measure orbital
tissue volumes on CT for patients with TED.7 However,
this program still required moderate additional effort and
manual data processing. They found comparable measure-
ments in healthy individuals to this study. Commercial and
open-source software packages provide tools for manual
or semi-automated segmentation of 3D images that have
aided volumetric studies in TED.8,12,18–20 Some of these stud-
ies have explored correlation of volumetric data to clini-
cal data, such as correlation between the orbital muscle
volumes to vertical strabismus,8 or the predictive potential
of orbital muscle volume in diagnosing CON, identifying the
medial rectus muscle volume as the most robust predictor.12

Other studies utilized magnetic resonance imaging (MRI)
to assess orbital volumes.6,17,24,34,38–40 One study utilized a
semi-automatic approach for segmenting orbital muscles in
TED using MRIs and found a substantial reduction in time,
from 20 minutes for the manual segmentation to 7 minutes.17

Although MRIs are higher resolution, they are more costly
and time intensive compared to CTs. For TED diagnosis and
management, CTs are usually sufficient and generally the
imaging modality of choice. Therefore, this study utilized

CTs to improve generalizability and provide a more real-
world accessible tool.

With the expansion of DL based volumetric studies in
radiology, the integration of DL techniques has been applied
to the study of TED as well. Jiang et al. presented a study on
DL-based FCN-8s network derived auto-segmentation model
for CTs to determine the clinical target volumes for poten-
tial radiotherapy, a region which includes the soft tissues
within the bony orbit posterior to the globe. They found the
DL-based model was similar to manual contouring, but they
did not segment orbital fat and muscles separately. Another
study utilizing a DL-based technique using Semantic V-Net
was developed for the automated segmentation and volume
measurement of orbital muscles of 97 presumably predom-
inantly Chinese patients, with an overall Intersection over
Union (IOU) score of 0.8207.23 This study provides similar
automatic segmentation tools with training across a broader
cohort of patients, with a DSC of 0.902.

The segmentation and volume extraction data were
subsequently utilized to correlate radiographic findings with
a clinical diagnosis. The M1 model utilized volume data
alone and was moderately accurate at distinguishing among
normal, mild TED, and severe TED (accuracy of 0.720 and
AUC of 0.874). The M2 model with patient clinical data and
no volumetric data demonstrated similar results (accuracy of
0.795 and AUC of 0.831), and the M3 model which combined
all the data from M1 and M2 mode further improved the
accuracy in distinguishing all three categories (accuracy of
0.828 and AUC of 0.903). However, the patient clinical data
in M2 and M3 are clinical measurements obtained by the
oculoplastic surgeon, and included features such as lagoph-
thalmos, and inferior and superior scleral show. In order for
a model to be generalizable and easily adoptable, it was felt
that the clinical features that are integrated into the model
should be easily assessed by a non-ophthalmology trained
provider. Thus, M4 included volume data and limited patient
data (age, gender, race, and smoking history). Interestingly,
the pared down clinical data in synergy with the volumetric
data was the most accurate model (accuracy of 0.838 and
AUC of 0.929) in distinguishing the three categories. This
model may be capturing the heterogeneity in which TED is
manifested across different age, gender, and race, and thus
improving the model accuracy. Given that the M4 model had
the best overall performance and no reliance on ophthalmic
expertise, this model was felt to be the best use in practice
and all subsequent analysis was based on this model.

Additional analysis was performed to better understand
the decision making in the ML model. Explainable DL
models provide human-interpretable explanations for the
model decisions.41,42 Although it is not always clear what
ML-based models emphasize, it is important to explore the
features that the model emphasizes in order to provide trans-
parency for the model, which is critical for healthcare imple-
mentation. On feature importance analysis, orbital muscle
volume was determined to be the most important feature
in distinguishing normal healthy patients and patients with
severe TED, whereas orbital fat volume, followed closely by
orbital muscle volume, total orbital volume, and age, was the
most important feature for patients with mild TED.

The strengths of this study include its large cohort of
patients, and that the volumetric DL model was trained on
both normal healthy patients and patients with TED, which
allows for higher accuracy in future TED studies. Volume
analysis and segmentation in patients with TED is particu-
larly challenging due to the small confined bony space and
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crowding at the apex. By training the model on patients
with TED rather than a normal cohort alone, the segmenta-
tion and volume analysis is more adaptable to the hetero-
geneity of TED orbital tissues on imaging and improve-
ment in accuracy of measurements. This study was also
performed on CTs rather than MRIs, which is more clinically
applicable in the real-world. However, this study also has
several limitations to consider. As this was a single-centered
study, the patient demographic is skewed toward Caucasian
patients and may make the model less generalizable in
various patient demographics. Additionally, this model only
included normal or TED CT scans, and excluded those with
other orbital processes or prior surgeries. This again limits
the model’s generalizability and utility in implementation. In
addition, the use of volume data obtained from the segmen-
tation model to train the classification model might intro-
duce some bias, however, we assume that the characteris-
tics of the data differ significantly between the images and
the calculated volumes, which we believed would mitigate
the risk of bias. Last, the imaging analysis was performed
retrospectively and subjects were not required to have fixa-
tion targets, which may lead to variation in axis of segmen-
tation or contraction states of the muscle. However, this is
more applicable to real-world utilization where subjects are
routinely getting imaging. Future studies include applying
the model to different patient cohorts, with a more diverse
patient demographic, for further optimization and valida-
tion. Comparison of this model to the accuracy of human
graders, including radiologists and oculoplastic surgeons,
should also be explored.

In conclusion, this study demonstrates an accurate and
efficient model that automatically segments and precisely
calculates the orbital fat and muscle volumes in under thirty
seconds. This provides high-quality, quantitative data in
analyzing the orbital soft tissues for patients with TED in
a rapid fashion. This volumetric model was then utilized
to provide precise quantitative volumetric data to build a
highly accurate classification model for predicting the pres-
ence of TED and TED with CON. The model also syner-
gistically used patient clinical information to optimize the
classification accuracy. With further validation, this model
may serve as a platform for future clinical studies and real-
time incorporation into clinical practice and triage. Overall,
this tool may have potential to enhance patient care through
supporting broader radiographic based clinical research.
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