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The primate visual cortex contains various regions that
exhibit specialization for different stimulus properties,
such as motion, shape, and color. Within each region,
there is often further specialization, such that particular
stimulus features, such as horizontal and vertical
orientations, are over-represented. These asymmetries
are associated with well-known perceptual biases, but
little is known about how they influence visual learning.
Most theories would predict that learning is optimal, in
the sense that it is unaffected by these asymmetries.
However, other approaches to learning would result in
specific patterns of perceptual biases. To distinguish
between these possibilities, we trained human
observers to discriminate between expanding and
contracting motion patterns, which have a highly
asymmetrical representation in the visual cortex.
Observers exhibited biased percepts of these stimuli,
and these biases were affected by training in ways that
were often suboptimal. We simulated different neural
network models and found that a learning rule that
involved only adjustments to decision criteria, rather
than connection weights, could account for our data.
These results suggest that cortical asymmetries
influence visual perception and that human observers
often rely on suboptimal strategies for learning.

Introduction

The ability to discriminate between different visual
stimuli is thought to depend on their visual cortical

representations: Discrimination is easiest for stimuli
that yield very different response patterns in neuronal
populations (Figure 1A) (Ahissar & Hochstein, 2004;
Panzeri, Harvey, Piasini, Latham, & Fellin, 2017).
Training-induced improvements in perceptual abilities,
known as visual perceptual learning (VPL), have been
suggested to arise from adjustments in sensory neuron
tuning (the retuning hypothesis) (Karni & Sagi, 1991;
Wenliang & Seitz, 2018)) or adjustment in the readout
weights of the sensory neurons (the reweighting
hypothesis) (Lu & Dosher, 2022; Sotiropoulos, Seitz, &
Series, 2011)). Both theories assume optimality in VPL,
which is to say that they involve learning that maximizes
discrimination performance for a trained task.

In certain perceptual situations, suboptimal learning
strategies could also lead to perceptual improvements.
Specifically, if the population response is asymmetrical,
so that one stimulus yields higher neuronal responses
than another (Figure 1B), learning can proceed by
adjustment of the decision criterion, without the need
for retuning or reweighting of sensory responses. Such
asymmetrical population responses are very common in
visual cortex. Examples include stronger responses for
cardinal orientations (Levick & Thibos, 1982; Nikara
Bishop, & Pettigrew, 1968; Schall, Vitek, & Leventhal,
1986; Vidyasagar &Urbas, 1982), for centrifugal motion
stimuli (Albright, 1989), for horizontal disparities
(DeAngelis & Uka, 2003), and for circular shapes
(Dumoulin & Hess, 2007). A particularly clear example
of this kind of asymmetry is the over-representation
of expansion optic flow compared to other optic flow
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Figure 1. Schematics for the alternative readout strategies and the experimental procedure. (A) The schematics of perceptual
decision-making using an optimal strategy. In an asymmetrical population (left), more neurons are selective for one stimulus
condition (red) than for the other (blue). The population consists of neurons with a variety of sensitives and tuning properties to the
two alternatives. Readout of the neuronal responses involves selecting relevant sensory signals that contribute to making a decision
by weighting neurons based on their selectivity and summing the weighted outputs to compute the decision variable. This strategy
can compensate for the asymmetry during readout, by assigning higher weights to stimulus with weaker representation or by
selecting equal numbers of neurons from each pool. Training can alter the responses or the readout weights (center), thus preventing
developing biased perceptual decisions (right). (B) An alternate strategy is to sum the total population response, with equal readout
weights for all neurons, yielding a scalar measure of the likelihood of one stimulus being present (left). During training, observers can
adjust their decision criterion according to the properties of the stimuli (center), but this approach will yield consistent perceptual
biases when the stimulus strength changes (right). (C) Motion direction discrimination task used in the pretraining (one session),
training (nine sessions) and post-training (one session) phases of the experiment. Each trial began when a fixation target appeared for
500 ms. Depending on the task’s difficulty, the stimulus appeared for 150 ms, 300 ms, or 500 ms. The stimulus was contracting or
expanding optic flow motion. Two options appeared on the screen when the stimulus and fixation target disappeared. The participant
could report the direction of the motion (expansion vs. contraction) with the keyboard.
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patterns in the medial superior temporal (MST) area
of visual cortex (Duffy & Wurtz, 1995; Graziano,
Andersen, & Snowden, 1994; Mineault, Khawaja,
Butts, & Pack, 2012; Saito et al., 1986).

Observers can change decision criteria easily when
it is warranted by the task (Aberg & Herzog, 2012).
However, this strategy is suboptimal under most
conditions, because it is vulnerable to producing
biased perceptual decisions when the stimulus
strength deviates from that of the trained condition
(Figure 1B). For example, training with a high-contrast
stimulus might cause observers to increase their
decision criteria, leading to perceptual biases for
low-contrast stimuli. We, therefore, wondered whether
observers would rely on suboptimal strategies when
training with stimuli that have asymmetric cortical
representations.

To answer this question, we trained a group of
human observers on an optic flow two-alternative
forced choice task that involved distinguishing between
expansion and contraction optic flow. We found that
observers exhibited biases that were predictable from
the characteristics of the asymmetrical representation
in MST and that these biases evolved with training in
a way that was consistent with a suboptimal learning
strategy.

To understand these dynamics, we compared
neural networks that were trained to perform the
same psychophysical task with different learning
rules. Among them, only a suboptimal learning
rule involving the adjustment of decision criteria
was able to account for the learning sensitivity and
biases observed in humans both before and after
training. These results suggest that asymmetric
representations of the kind that are commonly found in
the primate cortex can predict the properties of visual
learning.

Methods

Observers and apparatus

Fifty-six observers with normal or corrected-to-
normal vision participated in this study (20 male
observers, 36 female observers; age, 23.2 ± 3.36 years;
range, 18–32 years). All observers were naïve to the
purpose of the study and to visual psychophysics.
Observers gave written, informed consent before their
participation, and the study was approved by the Ethics
Committee of the Montreal Neurological Institute and
Hospital (NEU-06-033).

The experiment was run remotely and was controlled
by a browser-based program (Article 19 Group;
Montreal) that displayed the stimuli, monitored
performance, and stored the data. Participants

completed the study at home, on personal computers.
Before the start of the experiment, participants were
asked to provide the experimenter with their screen size.
All visual displays were in the range of 13 to 27 inches
diagonally and had a refresh rate of at least 30 Hz.
Stimulus parameters were calibrated to each observer’s
screen size. The viewing distance for each participant
was adjusted according to their individual screen sizes.
The observers were asked to measure their distance to
the screen every day and sit at the instructed distance
before beginning the training session.

Experimental procedure

The stimulus used in each experiment was an optic
flow stimulus composed of an expanding or contracting
random dot kinematogram. The stimulus was presented
on a gray background in the upper right quadrant at
an eccentricity of 6°. The random dot kinematogram
was composed of small (0.06°) black dots in a 3°
radius aperture with a dot density of 2.6 dots/deg2.
Dot velocity was set to 20°/sec. Stimulus duration
and dot time (after which the trajectory of the dot
ended and was restarted at a random position) varied
depending on the task’s difficulty. The dots presented
were either “signal dots” or “noise dots.” Signal dots
moved coherently in a specific direction, whereas noise
dots moved in random directions. The coherence of
the random dot kinematogram stimulus refers to the
proportion of signal dots.

Each trial started with a fixation point that the
observer had to fixate for 500 ms. After the stimulus
presentation (duration variable depending on the
experimental condition), the fixation point and stimulus
disappeared, and two options appeared on the screen
(expansion and contraction). The observer was required
to input their response with the keyboard (left for
expansion, right for contraction). A green flash signaled
a correct response and a red flash signaled an incorrect
response. The direction of motion of the stimulus was
chosen randomly for each trial.

As noted in the Introduction, we were interested in
studying learning for different levels of task difficulty.
Given the remote nature of the experiments, we were
unable to precisely control stimulus contrast, which in
any case does not matter much for optic flow tasks
(Morrone, Burr, & Vaina, 1995). We, therefore, used
stimulus duration to modulate task difficulty. For
condition 1 (20 observers), the stimulus was shown
for 150 ms with a dot lifetime of 75 ms. For condition
2 (19 observers), the stimulus was shown for 350 ms
with a dot lifetime of 175 ms. For condition 3 (17
observers), the stimulus was shown for 500 ms with a
dot lifetime of 250 ms. Each condition consisted of
three phases: a pretraining phase, a training phase, and
a post-training phase. In every phase of the experiment,
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the observers completed a direction discrimination task
in which they reported the direction of the motion
of the stimulus (contraction or expansion) with the
keyboard (Figure 1C). Dot coherence was adjusted
differently in each phase, as described elsewhere in this
article.

Experimental phases

Pretraining
The pretraining session required observers to report

the direction of the motion of the stimulus at different
coherence levels. The coherence levels tested were
0.025, 0.05, 0.1, 0.15, 0.2, 0.5, and 0.9. The pretraining
session was composed of 490 trials. Each block of 70
trials tested the same coherence level. The order of
coherences tested varied randomly for each participant.
The pretraining session lasted approximately
30 minutes.

Training
The training phase ran over 9 days and required

one training session to be completed per day. One
training session was composed of four blocks of
training. Each block was composed of 125 trials. The
observers were compensated with 1.2 cents (Canadian)
per correct response. At the start of each block, the
initial coherence of the stimulus was set to 0.7. The
coherence for each subsequent trial was set using
a two-down–one-up adaptive staircase procedure,
resulting in an 83% convergence level (Leek, 2001).
Observers were allowed to take a break between each
block. Each daily training session lasted approximately
30 minutes.

Post-training
The procedures for the post-training were the same

as for the pretraining. The only difference was that
observers received no feedback for correct and incorrect
responses, in order to avoid further training effects.
The order of coherences tested was chosen randomly
and differed from the order of coherences tested in the
pretraining phase.

Data analysis

Psychometric curve fitting
The observers’ performance as a function of

coherence was characterized by fitting a Weibull
function to the proportion of correct responses
using the maximal likelihood algorithm (MATLAB
Palamedes toolbox for analyzing psychophysical data)

(Prins & Kingdom, 2018). The Weibull function is given
as:

FW (x; α, β ) = 1 − ex
(

−
(x
α

)β
)

, (1)

where α determines the threshold and parameter
β corresponds with the slope of the function. The
criterion of maximum likelihood was used to find the
best fitting psychometric function to each observer’s
performance.

Bias calculation
We used the equation below to calculate the bias

(Wickens, 2001):

(Bias)= (
Norminv2 (Expansion hit rate)

− Norminv2 (Contraction hit rate)
)
/2 (2)

where Norminv is the normal inverse cumulative
distribution function. A log-transform was used to
remove a nonlinear effect of bias. Negative bias values
indicate a bias toward contraction, and positive values
indicate a bias toward expansion.

Statistical comparisons
Statistical comparisons of computed bias values were

based on the one-tailed Wilcoxon signed-rank (WSR)
test. To calculate the statistical difference of biases
before and after the training, we used the Wilcoxon
rank sum (WRS) test.

Model
To determine how observer learning might have

progressed, we simulated four computational models,
each starting from the assumption that psychophysical
decisions were based on the asymmetrical representation
found in areaMST. The threemodels embodied different
optimal and suboptimal learning rules. The equation
below describes the model:

y = σ

(
ge

Me∑
i=1

we
i x

e
i + gc

Mc∑
i=1

wc
i x

c
i + cd

)
, (3)

where xei and xci are the activation of the expansion
and contraction neurons in MST, respectively. we

i wc
i

are their readout weights (the strength of synaptic
connections to the readout neuron), ge and gc are
sensory gains, cd is the decision criterion (or the bias
term), and y represents the activation of the readout
neuron. In different versions of our models, the tuning
properties of the neurons are fixed, and the readout
weights (we

i ,wc
i ), the decision criterion (cd), and the

sensory gains (ge,gc) are the only model parameters that
change. All the trainable parameters of the model (θ )
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were optimized by using the gradient descent learning
rule:

θ i = θ i − α
∂L (θ )

∂θ
, (4)

where L is the error rate of the model which we
quantified using a binary cross-entropy loss:

L =
N∑
i=1

yilogŷi + (1 − yi) log (1 − ŷi), (5)

where ŷis and yis are the model outputs and the ground
truth labels, respectively for the ith trial.

All the synaptic weights (we
i , wc

i ) were initialized
to one, assuming that, at initialization, there is no a
priori assumption about the relative importance of the
sensory neurons in the task. The decision criterion cd
was initialized to zero, and the sensory gains (ge, gc)
were initialized to one.

The output of each sensory neuron (xei , xci ) was
modeled as a sigmoid function:

x = 1
1 + e−k(s−s0 )

. (6)

For the expansion and contraction neurons, the
parameter k was set to model their opposite input
selectivities (k = ± 5, s0 = −0.5). Variability across
sensory neurons was modeled by adding random
gaussian noise to k and s0 (ε ∼ N(0, 0.2)).

Results

Human experiment

We trained 56 human observers to distinguish
between contracting and expanding optic flow motion
over the course of 9 sessions and measured their

perceptual bias before and after the training. To
distinguish between different learning and readout
strategies (optimal vs. suboptimal), we divided the
observers into three groups, each with a different
stimulus duration (150, 350, and 500 ms). Stimulus
duration modulated task difficulty, as shown below.
Observers from all three conditions were tested
before training (pre-training test) and after training
(post-training test) to examine how perceptual learning
changed their perceptual sensitivity and bias.

In all three duration conditions, training improved
discrimination accuracy, as measured from a
comparison between the mean performance on the
pretraining and post-training sessions (Figure 2A).
Across observers, the threshold for accurate
performance (82%) was significantly reduced after the
training in all three conditions (p = 0.02 for a 150-ms
task, p < 0.001 for a 350-ms task, and p = 0.004 for
the 500-ms task, t-test) (Figure 2B). We selected the
82% correct threshold based on the criteria defined in a
previous study by Chowdhury and DeAngelis (2008).

To gain a more detailed understanding of how
perceptual behavior changed in our observers, we
analyzed two key aspects of their psychometric
behavior: perceptual bias and the slope of the
psychometric curve. To determine each observer’s
perceptual biases, we first determined the proportion
correct for both expansion and contraction stimuli.
Having no bias would mean an equal tendency to
choose expansion and contraction, with any deviation
from this balance indicating a non-zero perceptual bias
(see Methods for detail).

Figure 3A illustrates the biases of the observers
pretraining and post-training for each stimulus strength
condition. In all conditions, observers showed a
significant bias toward contraction before the training
(150 ms (pretraining): mean of biases ± SEM = −0.263
± 0.88; p = 0.0207; 350 ms (pretraining): mean of
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Figure 2. Training improved the performance of observers. (A) Average psychometric functions of observers in each condition pre and
post training in all three conditions. The observers’ performance as a function of coherence was characterized by fitting a Weibull
function to the proportion of correct responses using the maximal likelihood algorithm. (B) The mean psychophysical coherence
threshold before and after the training in three different conditions. Under all three conditions, observers’ thresholds were
significantly reduced after the training. Threshold was defined as 82% correct of the Weibull function fits. *Statistically significant
difference. Error bars show standard error of the mean (SEM).
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Figure 3. Changes in behavioral bias and slope of psychometric
behavior before and after training. (A) The average bias across
observers in each condition, before and after training. Before
training, the average bias in all conditions was significantly
toward contraction. This contraction bias changed after
training, with the average bias in the 500 ms condition
significantly shifted toward an expansion bias. Negative bias
values indicate a bias toward contraction, and positive values
indicate a bias toward expansion. (B) The mean slope of
psychometric behavior among observers did not change
significantly pre and post-training across all conditions.
*Statistically significant difference. Error bars show standard
error of the mean (SEM).

biases ± SEM = −0.183 ± 0.055, p = 0.022; 500 ms
(pretraining): mean of biases± SEM= −0.138± 0.066,
p = 0.0245, one-tailed WSR test) (Figure 3A). After
training, these biases were unchanged in the 150-ms
condition (mean of biases ± SEM = −0.147 ± 0.072; p
= 0.0207; one-tailed WSR test), but were eliminated in
the 350 ms condition (mean of biases ± SEM = −0.022
± 0.065, p > 0.05; one-tailed WSR test). Interestingly,
for the 500-ms condition, a significant bias toward
expansion emerged with training (mean of biases ±
SEM = 0.143 ± 0.061, p = 0.0245, one-tailed WSR
test). Overall, in the 350-ms and 500-ms conditions,
training resulted in a significant shift in bias (350 ms,
a difference of biases = 0.161, p = 0.048; 500 ms,
a difference of biases = 0.281, p = 0.0318, WRS
test), whereas in the 150-ms condition there was no
significant change (150 ms, difference of biases = 0.116,

p > 0.05, WRS test). Thus, training altered observers’
biases in different ways, depending on task difficulty.

We also compared psychometric curve slopes before
and after training. Any variation in the slope signifies
a change in observer sensitivity to motion perception.
However, on average, we observed no significant shift in
slope for any of the three conditions (Figure 3B) (p >
0.05 for all three conditions, WRS test).

The observed patterns of pretraining and post-
training biases suggest the use of a suboptimal readout
and learning strategy, as biases were not always reduced
through training. Indeed, for the easiest condition
(500 ms), an expansion bias emerged with training,
indicating that the VPL did not optimize performance.
An optimal readout and learning strategy, such as
readout reweighting, would be expected to improve
perceptual sensitivity while decreasing biases to zero in
all conditions, provided that observes received sufficient
training (Petrov, Dosher, & Lu, 2005). In the following
section, we use computational modeling to evaluate
various readout and learning algorithms based on their
ability to replicate our experimental findings.

Computational model

The psychophysical results presented in the previous
section reveal the following pattern of perceptual effects
(Figure 2). 1) In all conditions, observers showed strong
contraction bias before training. 2) Training improved
motion discrimination on average. 3) Perceptual biases
changed with training differently in the three conditions.
In particular, in the most difficult condition (150-ms
duration), the contraction bias remained after training.
In the medium difficulty condition (350 ms), biases were
typically decreased. In the easiest condition (500 ms), a
large expansion bias emerged with training.

To gain insight into how training improved
performance and altered the perceptual biases of the
human observers, we developed a neural network
model that, similar to area MST in the visual cortex,
had an asymmetrical sensory representation of the
two stimulus conditions (contracting vs. expanding
optic flow). The two sensory populations (xei and xci )
projected to a single readout neuron that outputs
the decision variable (here, expansion or contraction
decision) (Figure 1A). The scalar output of the readout
neuron was compared in the two stimulus conditions
(i.e., expanding vs. contracting optic flow), and the type
of optic flow in each trial was determined based on a
decision criterion (cd). If the decision neuron fired larger
than cd, the input stimulus would be determined as an
expanding stimulus and contracting otherwise. Previous
physiological studies reported that the majority of
neurons in area MST are tuned to expansion optic
flow. Specifically, Saito et al. (1986) reported a ratio
of 70% expansion-tuned cells (Saito et al., 1986),
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Graziano et al. (1994) reported 84% (Graziano et al.,
1994), and Heuer and Britten (2004) reported 87%.
Given these varying ratios in the literature, we chose an
80% ratio in our computational model as an averaged
representation of the previous reports, indicating that
80% of the sensory population in our model was set to
be selective for expansion stimuli. The tuning properties
of the artificial neurons were fixed and did not change
during training. The only trainable components of
the model were the readout weights, which set the
connection strength between the sensory neurons and
the readout neuron, as well as the decision criterion (cd).
The learning rules only modulated the readout weight
and/or the decision criterion throughout training. The
equation below summarizes the model:

y = σ

( Me∑
i=1

we
i x

e
i +

Mc∑
i=1

wc
i x

c
i + cd

)
.

The goal was to determine which learning rule
could best explain and reproduce observers’ behavior
during the pretraining, training, and post-training
phases. Before simulating the perceptual training
experiment (our psychophysics experiments), we
pretrained the neural network model to simulate the
pre-experiment condition of the human observers. To
achieve this goal, we trained the model exclusively with
high-strength optic flow stimuli, under the assumption
that the human visual system is generally adapted to
high-coherence optic flow encountered in daily life.
Thus, the preliminary training phase was conducted
using very high coherence level stimuli ranging from 0.5
to 1.0.

We investigated two learning rules during the initial
training phase:

(1) Optimal readout training: This learning rule
adjusted the readout weights of individual sensory
neurons (wi) as well as the decision criterion (cd) to
achieve optimal performance.

(2) Decision criterion modulation: This learning rule
only adjusted the decision criterion while keeping
the sensory readout weights unchanged.

After the preliminary training, we evaluated the
pretrained model using stimuli with varying coherence
levels (0.15 to 0.65), to mimic the pretraining test
phase of our experiment. To simulate the three
different stimulus durations used in the psychophysics
experiments, we scaled the coherence levels by three
distinct factors (0.3, 0.6, and 1.0). This scaling was done
to incorporate the influence of duration in the model,
as suggested previously (Law & Gold, 2008).

When we used the optimal learning strategy during
the preliminary training phase, the model showed
no perceptual bias when tested with low strength
stimuli. This finding was inconsistent with the human

observers’ pretraining contraction bias. In contrast,
once the model was trained with the decision criterion
modulation strategy, it consistently showed a significant
contraction bias across all levels of difficulty. This
outcome closely resembled the results obtained in
the human experiment (Figure 4A, gray bars). These
findings suggest that, with an asymmetric sensory
population, a simple and suboptimal readout approach
(i.e., modifying only the decision criterion) can
effectively account for the initial contraction bias
observed in our psychophysics observations.

Next, we simulated the nine-session training phase
of our psychophysics experiments by retraining the
model using low coherence stimuli ranging from 0.2 to
0.3. We specifically chose this low coherence range to
mimic the two-down–one-up staircase procedure used
during the nine-session training phase of the human
experiment. This procedure required the observers
to concentrate on a limited coherence range centered
around their perceptual threshold. Again, note that
the model can be trained for this phase either by using
the optimal learning strategy or decision criterion
modulation (criterion-sum model: the decision criterion
is determined by the sum of the population responses
conveyed to the downstream readout; criterion-diff
model: the decision criterion is set by subtracting
responses from two subpopulations before they reach
the downstream readout). Finally, similar to the
post-training test in the human experiment, we tested
the models again with the same range of coherences we
used in the pretraining phase.

After the training, all models exhibited improved
discrimination accuracy across all conditions
(Figure 4B). However, the model using the optimal
learning strategy displayed no bias in any of the
conditions after training (Figure 4A). The decision
criterion modulation (criterion sum), in contrast,
could fully reproduce the human biases: For the
difficult condition, there was a slight reduction of
contraction bias but the bias remained significantly
toward contraction. For the moderate condition, the
model had no significant bias after training. For the
easy condition, significant bias toward expansion
emerged after training. Notably, this expansion bias
only occurred when all neurons in the population
had the same readout weight (we

i = wc
i = w); that

is, the downstream readout neuron received a sum
of their firing. This key observation implies that the
putative downstream readout neurons assign equal
importance to each sensory neuron from which they
receive information. An alternative approach, in which
the two populations had equal but opposite-signed
readout weights (we

i = −wc
i = w; i.e., the downstream

readout neuron receiving a difference of their firing),
did not result in the same expansion bias.

To determine whether the asymmetrical sensory
representation was necessary to account for these
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Figure 4. Comparison of the bias and discrimination accuracy of the model using different strategies during training. (A) During the
preliminary training phase, the model was trained with decision criterion strategy modulation with high strength optic flow stimuli.
The model showed significant bias toward contraction, similar to observer behavior (gray bars). After retraining with low-strength
stimuli, the decision criterion model using the sum of population firing (criterion-sum, blue bars) could reproduce human experiment.
However, both the decision criterion model that used the subtraction of responses from the two subpopulations reaching the
downstream readout (criterion-diff, green bars) and the optimal model couldnot replicate the observers’ behavior (optimal, yellow
bars). (B) After the training, the discrimination accuracy (% correct) of all models was improved in all conditions. The accuracy of the
optimal model always reached 100% after training. Error bars show the standard error of the mean (SEM).
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Figure 5. Comparison of the bias and discrimination accuracy of the model with a symmetrical population. (A) We trained the model
with a symmetrical population using the decision criterion modulation strategy during the preliminary training phase. In the
pretraining test, the model did not develop a bias in all conditions (gray bars). We then retrained the model with low strength stimuli
using criterion-sum model (blue bars), criterion-diff model (green bars) or optimal readout model (yellow bars). The bias of all models
remained at zero in all conditions in the post-training phase. (B) In the pretraining phase, the model’s discrimination accuracy (%
correct) remained at the chance level. After the training (post-training phase), there was no improvement in the performance of the
criterion-sum model, while the discrimination accuracy of the criterion-diff and optimal readout models reached 100% in all
conditions. Error bars show the standard error of the mean (SEM).
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Figure 6. The bias and discrimination accuracy of the model
using gain modulation strategy in the training phase. The
perceptual training was modeled using the gain modulation
strategy. After 50 epochs of training, the model could
reproduce human behavior for (A) bias and (B) accuracy. Gray
bars indicate the models’ results in pretraining, and red bars in
post-training using gain modulation strategy. Error bars show
the standard error of the mean (SEM).

results, we tested the model using a symmet-
ric sensory population. The decision criterion
modulation was applied during the preliminary
training, followed by decision criterion modulation or
optimal learning strategies in the training phase. In this
case, the symmetric sensory population was unable to
reproduce human behavior (Figure 5).

Humans can also enhance their performance
by increasing the gain of sensory representations
during training. This gain modulation strategy can be
interpreted as an attention mechanism recruited during
perceptual learning (Fox, Birman, & Gardner, 2023;
Maunsell & Treue, 2006), but it can also involve other
neuronal mechanisms that are not directly linked to
attention.

Therefore, instead of altering the decision criterion,
an alternative approach to training could involve
adjusting the gain of sensory responses to align with
the decision criterion value. We tested this strategy by
introducing multiplicative gains to the sensory readout
(geand gc) (see Methods and Equation 3). Instead of
optimizing the readout weights or the decision criterion,
we assessed the learning dynamics of adjusting these
sensory gains during training. As shown in Figure 6,
the gain modulation strategy could reproduce our
observed bias and accuracies across the three difficulty
conditions. These findings indicate that modulating

the decision criterion (which is also equivalent to an
additive gain modulation of neurons’ responses; see the
Discussion for more details) and multiplicative gain
modulation can reproduce our psychophysical results.
It is important to emphasize that both the decision
criterion and gain modulation are suboptimal learning
strategies because they do not involve optimal tuning of
all weight values of the model.

Discussion

Practicing perceptual tasks has been shown to
enhance performance, and these improvements have
primarily been attributed to the adaptation of existing
sensory representations or their readouts to the specific
training task (Karni & Sagi, 1991; Lu & Dosher,
2022; Sotiropoulos et al., 2011; Wenliang & Seitz,
2018). These adaptations are commonly assumed
to be optimal, in the sense that the sensory and/or
sensorimotor synaptic connections are expected to
undergo changes that optimize task accuracy. However,
in our study, we sought to challenge this optimality
assumption by investigating perceptual learning within
a paradigm that relied on an asymmetric sensory
representation. The over-representation of specific
classes of stimuli in visual cortex enables the possibility
of a suboptimal readout solution, which is not viable
with a symmetric sensory representation (Figure 1).
For these stimuli, we find that observers exhibit
patterns of biased perception that change with training
(Figure 2) in a manner that depends on task difficulty
(Figure 3).

Through computational modeling, we show that a
simple adjustment of the decision criterion adequately
accounted for the initial and the training induced
biases of the observers (Figure 4). Notably, an
optimal learning rule failed to explain the observed
biases (Figures 5, 6). Considering the prevalence of
asymmetric sensory representations in the cortex,
our findings make critical contributions to our
understanding of learning within the visual system. By
uncovering the role of decision criterion modulation
in perceptual learning, particularly in the context of
asymmetric representations, we challenge the prevailing
assumptions regarding optimal adaptation of sensory
and sensorimotor connections.

Representational asymmetries in the visual
cortex

The primate visual cortex consists of many different
brain regions, most of which respond specifically to
particular stimulus features. In most of these regions,
the encoding of stimulus features is not uniform but
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rather biased toward specific stimulus properties. These
biases can take the form of higher firing rates, narrower
tuning curves, or non-uniform distributions of stimulus
preferences. Asymmetries can also change across
retinal locations (Albright, 1989; Ponce, Hartmann, &
Livingstone, 2017; Sasaki et al., 2006).

Probably the best-known example is the cardinal
bias found for orientation selectivity in the primary
visual cortex (V1) (DeValois, 1982; Li, Peterson, &
Freeman, 2003): There are more V1 neurons that
prefer horizontal or vertical orientations than oblique
ones. This asymmetry might coexist with a radial
organization, in which the most common preferred
orientation varies with receptive field position (Sasaki
et al., 2006). In either case, the result is that the V1
population response is greater for some orientations
than for others, setting up the conditions for learning to
exploit changes in decision criteria. This would seem to
be important for the field of VPL, given that so many
studies use oriented stimuli (Song et al., 2010).

Other biases that have been detected neurophysiolog-
ically include biases for dark stimuli (Komban et al.,
2014; Yeh, Xing, & Shapley, 2009), “daylight” colors
(Lafer-Sousa, Liu, Lafer-Sousa, Wiest, & Conway,
2012), near disparities (DeAngelis & Uka, 2003;
Tanabe, Doi, Umeda, & Fujita, 2005), small motion
stimuli (Liu, Haefner, & Pack, 2016; Tsui & Pack,
2011), concave surfaces (Verhoef, Vogels, & Janssen,
2012), and curved shapes (Pasupathy & Connor, 2002).
There are also entire brain regions dedicated to specific
categories of stimuli, such as motion, color, faces,
and food, and it is conceivable that observers rely on
these asymmetries by changing their readout strategies
during VPL (Bakhtiari, Awada, & Pack, 2020; Chen,
Cai, Zhou, Thompson, & Fang, 2016; Liu & Pack,
2017).

These cortical asymmetries tend to reflect ecological
or evolutionary experience (Brenner & Rauschecker,
1990; Mineault et al., 2012). The strong preference
for expansion over contraction optic flow is likely
linked to the visual experience of frontal-eyed animals
during locomotion, and the bias for small moving
stimuli has long been associated with the function
of separating objects from the background (Lettvin,
Maturana, McCulloch, & Pitts, 1959; Liu et al., 2016;
Tadin et al., 2019). Cardinal orientations are apparently
overrepresented in natural images (Girshick, Landy,
& Simoncelli, 2011), and the bias toward curved or
circular stimuli in the midlevel cortex could be a part
of a network for face processing in the higher level
cortex (Ponce, Hartmann, & Livingstone, 2017). Our
findings suggest that the brain readily leverages these
asymmetries during VPL, highlighting the importance
of neurophysiological considerations in visual learning
(Bakhtiari et al., 2020).

In this regard, it is worth considering the influence of
natural stimuli outside the laboratory during learning

experiments. For experiments that span several days,
exposure to the natural world would be expected to
counteract or reinforce VPL, depending on the nature
of the stimuli and their representation in cortex.

It is also important to highlight that the ability to
leverage preexisting representational biases might also
be influenced by the nature of the task. Specifically,
our study used a coarse optic flow discrimination task
where the two optic flow conditions were distinctly
different. Such a task condition could potentially
influence the choice between optimal and suboptimal
learning strategies. Future research should revisit this
inquiry within the context of a fine discrimination
task, where the two stimulus conditions are closer (e.g.,
expanding versus contracting spiral motion).

Although the cortical asymmetries of specific visual
representations, as reported elsewhere in this article,
have been studied extensively, the behavioral outcomes
stemming from these asymmetries need further
investigation. It is expected that an over-representation
of a stimulus in the cortex would result in enhanced
discrimination accuracy for that stimulus. Yet, the
impact of such over-representations on the subjective
appearance of stimuli remains ambiguous. For
instance, when presented with noisy and uncertain
stimuli, human observers perceive orientations
that deviate from the actual horizontal and vertical
orientations—orientations that are over-represented
in the visual cortex (Szpiro, Burlingham, Simoncelli,
& Carrasco, 2022). This observation aligns with the
contraction bias noted in our study, which suggests a
perceptual deviation away from the over-represented
stimulus condition. Conversely, other over-represented
stimuli, like faces, correlate with increased detection
rates under noisy conditions, as seen in phenomena
like face pareidolia (Wardle, Taubert, Teichmann, &
Baker, 2020). The discrepancies in observed effects
might stem from inconsistencies in the task paradigms
across different studies. A comprehensive comparison
of these over-represented stimuli and their behavioral
manifestations within a consistent task framework is a
pivotal direction for future.

Comparison with previous psychophysical
results

Some of the abovementioned cortical asymmetries
have likely perceptual consequences. For orientation,
there is the oblique effect (Appelle, 1972), in which
human and animal observers are more sensitive to
horizontal and vertical orientations than to others.
As with cortical responses, human psychophysical
observers are more sensitive to dark stimuli than
to light stimuli (Komban et al., 2014). The cortical
preference for small moving stimuli is associated with
a wide range of perceptual phenomena presumably
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related to figure–ground segregation (Tadin, 2015).
The over-representation of foveal stimuli in most of
retinotopic cortex has been linked to perceptual effects
that occur during eye movements (Richard, Churan,
Guitton, & Pack, 2009). And the over-representation of
entire classes of stimuli, such as faces, is thought to be
partly responsible for illusory perceptual phenomena
(i.e., pareidolias). Some of these biases can be decreased
or abolished with training (Bakhtiari et al., 2020;
Furmanski, Schluppeck, & Engel, 2004).

An example of this phenomenon was recently
presented in work by Szpiro, Burlingham, Simoncelli,
& Carrasco (2022), where it was demonstrated that
perceptual learning of orientation discrimination
amplified the preexisting bias toward cardinal
orientations. They modeled the post-training
improvement in perception by proposing an increased
gain of neurons encoding the task stimuli, which could
also reproduce their observed humans’ biases. However,
an important distinction between their study and
ours lies in the fact that their task stimuli consisted
exclusively of under-represented stimuli, which could
lead to different perceptual biases.

The consequences of these asymmetries are seldom
considered in VPL studies, most of which are concerned
with changes in sensitivity. Indeed, many models
assume that decision criteria are set optimally, in an
unbiased manner (Petrov et al., 2005). Nevertheless, in
detection paradigms, people often alter their decision
criteria, even though this strategy is not optimal
(Wenger, Copeland, Bittner, & Thomas, 2008), and this
factor can result in biased perceptual responses (Seitz,
Nanez, Holloway, Koyama, & Watanabe, 2005). Our
findings extended this strategy to a discrimination task
that involved asymmetrical cortical representations of
two distinct stimulus conditions. In this particular case,
humans seem to be able to transform the discrimination
task into a detection task, by aiming to detect the
overrepresented stimulus condition (here, the expansion
optic flow).

Some previous work has examined the effects of
asymmetries in the design of perceptual learning tasks.
In these experiments, asymmetries are created by
presenting one stimulus more often than another, or by
providing false or irrelevant feedback (Herzog, Ewald,
Hermens, & Fahle, 2006; Herzog & Fahle, 1999; Seitz
et al., 2005). In these cases, observers seem to respond
by altering their decision criteria. Although changes in
sensitivity and in criterion often occur simultaneously
(Wenger et al., 2008), they have different characteristics,
the most notable of which is the faster dynamics of
changes in criteria (Aberg & Herzog, 2012).

Additionally, it is important to highlight some
limitations in our study owing to the remote nature
of our experiment’s implementation. In this study, we
conducted psychophysical experiments remotely, with
participants using their personal computers at home,

controlled by a browser-based program. Although
this approach allowed for a larger and more diverse
participant pool, it also introduced certain limitations
that are worth consideration. First, the use of personal
computers means that there is inherent variability
in the hardware and software configurations across
participants. This variability includes differences in
display types, sizes, and refresh rates, which can impact
the consistency of stimulus presentation and task
performance. Although stimulus parameters were
calibrated to each participant’s screen size, this may
not fully account for variations in display quality and
resolution. Additionally, although the viewing distance
was adjusted according to individual screen sizes,
controlling factors like ambient lighting and seating
posture, which can affect perceptual performance,
was challenging in the home environment, potentially
impacting environmental validity across participants.
However, it is important to emphasize that these
factors should not systematically affect our results
because they were common to all participants across
all three conditions (150-ms, 350-ms, and 500-ms
stimulus durations). For this reason and to ensure
consistency across conditions, we analyzed three key
metrics that assess learning effects for each participant
within each condition: 1) changes in psychometric
threshold before and after training, 2) alterations
in the slope of the psychometric curve before and
after training, and 3) shifts in the lapse rate over
the training period. Subsequently, we conducted an
analysis of variance on these metrics to identify any
condition-related disparities. The results indicated
no significant differences among the conditions (p
> 0.05, analysis of variance). Further studies could
explore ways to standardize the at-home experimental
conditions or consider alternative methods to address
these limitations.

Implications for learning in the cortex

In most psychophysics experiments, it is challenging
to differentiate between different strategies and learning
rules. A change in decision criterion would likely yield
results similar to improved attentional focus, which is
known to be crucial for learning (Szpiro & Carrasco,
2015). Specifically, a modulatory attentional effect that
changes the excitability of sensory neurons’ responses
could be similar to the decision criterion modulation
observed in our study. Interestingly, previous research
has reported biases in perceptual responses to attended
stimuli versus unattended stimuli (Itthipuripat, Chang,
Bong, & Serences, 2019), showing a perceptual effect
similar to the observations in this study.

Despite the challenges of distinguishing between
different learning strategies, our results are in conflict
with the prevailing notion that performance is
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optimized through learning. This notion may hold true
when using stimuli with symmetric representations
and investigating learning solely based on perceptual
sensitivity (Petrov et al., 2005). However, under
asymmetric stimulus representations, which are
common in the cortex, as mentioned earlier, suboptimal
and easier solutions may be adopted (Liu, Dosher,
& Lu, 2015). Our study shows that an optimal
learning algorithm, such as gradient descent, does
not automatically discover the suboptimal and easier
solution under asymmetric representations.

Fitzgerald et al. (2013) raised an intriguing possibility
that observers may tend to create low-dimensional
representations of the task stimuli. This strategy enables
observers to introduce their own representational
asymmetries, even where the underlying sensory
representations of the task stimuli are symmetric. The
creation of such low-dimensional and asymmetric
representations, as demonstrated in this study, facilitates
a simpler learning process for the stimulus–response
mapping. Therefore, learning strategies that exploit
asymmetric representations may potentially remain
latent in numerous VPL experiments, including
those that do not rely explicitly on the intrinsic
representational asymmetries of the visual cortex.

For certain kinds of learning tasks, asymmetric
representation could be useful. For applications of the
VPL in particular, changes in sensitivity often require
prolonged training and fail to generalize beyond the
trained stimulus, limiting their utility for therapeutic
purposes or other applications. Our results, along with
previous findings (Aberg & Herzog, 2012) suggest
that decision criteria can be adjusted more rapidly,
often within a single session, although the learning
effects might also be more transient (Aberg & Herzog,
2012). One goal for future research could therefore be
to exploit representational asymmetries in the brain
to develop faster learning (Pandey, Neupane, Vaidya,
Adhikary, & Pack, 2022).

Comparison with previous computational
models

Previously proposed theories of VPL have primarily
suggested optimal changes either in the sensory
representations (referred to as retuning) (Karni &
Sagi, 1991; Wenliang & Seitz, 2018) or in the readout
of sensory neurons (referred to as reweighting) (Lu
& Dosher, 2022; Sotiropoulos et al., 2011). However,
these theories have assumed homogeneous sensory
representation of task stimuli, whereas, as we showed
elsewhere in this paper, an asymmetric representation
enables a simpler learning strategy that does not align
with the existing literature. Recent studies have provided
computational evidence demonstrating that artificial
neural networks also display similar representational
asymmetries, as they mirror the biases present in

their training data (Benjamin, Zhang, Qiu, Stocker,
& Kording, 2022). Learning algorithms capable of
leveraging these representational asymmetries may
bring artificial neural networks closer to capturing
human learning dynamics.

For a naïve observer, before training, the readout
weights of sensory neurons are not inherently different
owing to the unfamiliarity with the task and the
absence of a priori assumptions regarding the relative
importance of these neurons in the task (Wenliang &
Seitz, 2018). In the case of asymmetric representation
of task stimuli, as discussed earlier, the initial equal
readout weights are effective enough to solve the task
(Figure 1). The key question is whether humans would
optimize learning by adjusting the readout weights of all
sensory neurons, deviating from equal readout weights,
or if they would maintain the suboptimal strategy of
equal readout weights and enhance performance solely
by modulating the decision criterion. Our findings
suggest that, when feasible, humans learn to improve
task performance by solely adjusting the decision
criterion, without modifying the readout weights. It
is also justifiable from a computational complexity
perspective as it is more efficient to find and store
the optimal value of one parameter (i.e., the decision
criterion) rather than optimizing a large number of
sensory readout weights. This becomes more critical
for multitask learning. Previous work on few-shot
learning in artificial neural networks (Triantafillou,
Larochelle, Zemel, & Dumoulin, 2021) has suggested
the advantages of a similar approach in machine
learning, namely, keeping the feedforward connection
weights stable and adjusting the bias and scale of the
readout from each layer for every new task. Although
our focus in this study was primarily on sensorimotor
readout, this approach could potentially be applicable
to multiple layers.

Furthermore, our observed modulation of the
decision criterion can be interpreted as a global change
in the firing rate of sensory neurons. Specifically, a
decrease (or increase) in the decision criterion in our
model corresponds to a global increase (or decrease) in
the firing rate of sensory neurons (see Equation 3). We
also showed that learning via adjusting a multiplicative
gain could reproduce the biases observed in humans.
These results suggest that the proposed role of
decision criterion or gain modulation in perceptual
learning could be implemented through an additive
or multiplicative top-down modulation of the global
firing rate of sensory neurons. Interestingly, a previous
neural network model of perceptual learning (Herzog
& Fahle, 1998) highlighted the significance of top-down
modulation signals in capturing the dynamics of
perceptual learning. This observation implies that,
unlike gradient descent, more biologically plausible
learning algorithms that rely on top-down modulation
of neurons’ activation, such as target propagation (Lee,
Zhang, Fischer, & Bengio, 2015) and its more recent
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variants (Meulemans, Zucchet, Kobayashi, von Oswald,
& Sacramento, 2022), may be able to reproduce our
observations. Despite converging to similar solutions in
the steady state (Meulemans et al., 2022), the trajectory
of reaching the final solution may differ among these
learning algorithms that make comparisons with the
dynamics of human learning worthwhile.

In our modeling experiments, we trained all variants
of the model for a fixed number of epochs, considering
the time constraints in human psychophysics
experiments. After this fixed training period, we
compared the performance of different learning
strategies. However, we also noticed that longer training
times for two of our learning strategies, namely,
decision criterion modulation and gain modulation,
resulted in distinct bias patterns. Unlike decision
criterion modulation, extending the training period
with gain modulation led to an expansion bias across
all task conditions (easy, medium, and difficult).
Currently, our psychophysics data are insufficient to
differentiate between these two possibilities, because
longer training periods are necessary for the more
challenging conditions.

Conclusions

We demonstrated that, when relying on asymmetric
sensory representations, humans use a simple readout
and learning strategy to improve their perceptual
performance. This strategy cannot be explained by
the optimal learning algorithms proposed in previous
studies. Considering the widespread representational
asymmetries in the cortex, our findings carry significant
implications for learning mechanisms in cortical
processing. Future research should explore a broader
range of learning algorithms, particularly those
that incorporate top-down feedback modulations,
to examine their capacity to replicate the learning
dynamics and biases observed in humans.

Keywords: perceptual learning, bias, motion
perception, optic flow
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