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Solving a maze effectively relies on both perception and
cognition. Studying maze-solving behavior contributes
to our knowledge about these important processes.
Through psychophysical experiments and modeling
simulations, we examine the role of peripheral vision,
specifically visual crowding in the periphery, in mental
maze-solving. Experiment 1 measured gaze patterns
while varying maze complexity, revealing a direct
relationship between visual complexity and
maze-solving efficiency. Simulations of the maze-solving
task using a peripheral vision model confirmed the
observed crowding effects while making an intriguing
prediction that saccades provide a conservative measure
of how far ahead observers can perceive the path.
Experiment 2 confirms that observers can judge whether
a point lies on the path at considerably greater distances
than their average saccade. Taken together, our findings
demonstrate that peripheral vision plays a key role in
mental maze-solving.

Introduction

Solving a maze entails navigating through a network
of passages with the objective of finding the path
from an entry point to an end point. To solve a maze
effectively, one needs to perceive the path ahead and
aspects of the maze layout, note dead-ends, explore
paths systematically, and backtrack if needed. As
such, maze-solving is a multilayered process involving
perception, action, and cognition (Zhao, Marquez,
Hemmer, & Kowler, 2013). This article focuses on
perceptual aspects.

Solving an even moderately complex maze cannot be
done at a glance. Nor does maze-solving involve tracing
every inch of the path by eye. Rather, maze-solving
involves a discrete set of fixations on or near the path
(Crowe, Averbeck, Chafee, Anderson, & Georgopoulos,
2000). How might the observer saccade in order to
mentally solve a maze?

Previous work on saccade planning and execution
suggests that saccades are used to improve the visibility
of task-relevant information in tasks as diverse as visual
search (e.g., Najemnik & Geisler, 2005; Najemnik &
Geisler, 2009), reading (e.g., Legge, Klitz, & Tjan,
1997), and shape recognition (e.g., Renninger, Verghese,
& Coughlan, 2007). For example, Najemnik and Geisler
(2005) asked observers to search for a sine-wave grating
embedded in 1/f noise and found that the number of
saccades to locate a target and the location of fixations
were predicted by a Bayesian ideal observer model,
limited by the fall-off in the target detectability as a
function of eccentricity, which directs gaze to locations
with highest target probabilities. Their later work
(Najemnik & Geisler, 2009) showed that gaze patterns
were also predicted by an ideal observer using a simpler
but biologically more plausible strategy (i.e., entropy
limit minimization), which directs gaze to locations,
minimizing the expected uncertainty.

We might extend this sort of logic to saccade
planning in maze-solving tasks as follows: Starting at
the maze entrance, an observer fixates a point along
the path while likely extending their visual processing
along the path as far as possible. Based on the visual
information available at the current fixation, the
observer iteratively chooses a new fixation point to
gain additional information until they perceive the
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exit. In this scheme, the degree to which the observer
perceives the path ahead depends on peripheral vision,
the visual processing beyond our current point of gaze.
Peripheral vision can encounter uncertainty regarding
the direction of the path either due to branching
paths or because perceptual factors such as visual
clutter significantly diminish our ability to discern
the upcoming path. In such cases, a well-functioning
visual system would shift the point of gaze to acquire
additional information. Making a long saccade in
the face of uncertainty risks deviating from the path.
Consequently, when one’s ability to perceive the path
ahead is limited, one might prefer to execute shorter
saccades. However, overly conservative choice of
saccade length reduces maze-solving efficiency.

Visual crowding provides a primary limiting factor
in the use of peripheral vision (Rosenholtz, 2016).
Crowding refers to the harmful effect of clutter on
one’s ability to perceive information in the periphery
(Bouma, 1970; Levi, 2008; Pelli et al., 2007). In fact,
previous work on maze-solving and related tasks
has found evidence for effects consistent with visual
crowding. Ullman and colleagues (Jolicoeur, Ullman,
& Mackay, 1991; Jolicoeur & Ingleton, 1991; Ullman,
1996) studied visual cognition tasks equivalent to
maze-solving, such as tasks in which observers had
to decide whether two points lay along a single line or
distinct lines. Observers took longer to respond when
the distance between the points was greater (Jolicoeur,
Ullman, & Mackay, 1986), when the lines were in
close proximity, or when the lines exhibited greater
curvature (Jolicoeur et al., 1991), consistent with use of
both peripheral vision in general and visual crowding
in particular. Intuitively, curvature would increase
crowding because curved stimuli are more complex and
include more orientations. If crowding is due to some
sort of feature averaging or pooling, then in the stimuli
of the curve-following tasks of Jolicoeur et al. (1991);
Jolicoeur and Ingleton (1991); Roelfsema (2006), and
Ullman (1996), the average orientation in the stimuli
composed of straight lines is the same as the stimulus
orientation, so that maze will be well represented by
the average, whereas in the stimuli composed of curved
lines, the average orientation does not well represent the
stimulus. Similarly, in visual crowding, identification
performance declines when stimuli, such as letters, in
the periphery are flanked by other letters that are in
close proximity or in critical spacing (Bouma, 1970).
Moreover, crowding can result in mislocalization
errors (Korte, 1923), and the level of crowding is
influenced not just by the distance to flanking stimuli
but also the stimulus characteristics (Pelli, Burns,
Farell, & Moore-Page, 2006; Pelli & Tillman, 2008).
Indeed, Jolicoeur et al. (1991) attributed their results
to crowding (referring to it as “lateral masking,”
a term previously used somewhat interchangeably
with “crowding”). However, Jolicoeur et al. (1991)

focused on one aspect of crowding, its dependence on
spacing between stimulus items such as neighboring
paths.

Similarly, a study by Crowe et al. (2000) on mental
maze-solving (i.e., solving a maze mentally without
marking it physically) showed that both the length
of the path (i.e., the distance to be traversed between
the maze entrance and exit) and the frequency of
turns (i.e., 90° turns along the path) contributed
to maze-solving performance and demonstrated
that the duration of the current fixation depends
upon both the length of the next saccade and the
frequency of turns between the two fixations. That is,
observers actively use the information that is available
in their periphery while moving their eyes, once
again implying a role of peripheral vision in mental
maze-solving.

In a recent study, Yu, Wan, Balas, and Rosenholtz
(2019) investigated the effects of maze appearance
on maze-solving performance. By measuring or
systematically manipulating the path and wall thickness
as well as path style in simple mazes, authors showed
that maze-solving time increases with thicker paths
and wavy walls. These findings suggest that perceptual
aspects of a maze influence maze-solving performance
in a way consistent with visual crowding (Rosenholtz,
2016) and figure/ground segmentation. The current
study builds upon the previous findings by examining
eye movements using behavioral experiments and
modeling.

A perceptually complex and visually crowded
maze should increase the ambiguity associated with
the path ahead, forcing the visual system to execute
smaller saccades to resolve this ambiguity as they solve
the maze. This would mean that for more crowded
mazes, observers would make a larger number of
fixations for a given path length. In Experiment 1,
we manipulated the visual complexity of mazes
while controlling other factors (e.g., path length,
number of turns, etc.) and measured the fixations
observers made to solve the mazes. We then modeled
the maze-solving task using a model of peripheral
vision, the Texture Tiling Model (TTM; Balas, Nakano,
& Rosenholtz, 2009; Ehinger & Rosenholtz, 2016;
Keshvari & Rosenholtz, 2016; Rosenholtz, Huang,
& Ehinger, 2012; Rosenholtz, Huang, Raj, Balas, &
Ilie, 2012; Zhang, Huang, Yigit-Elliott, & Rosenholtz,
2015), to test whether the model can explain the
observed fixation data. We show that the model
consistently predicts a smaller number of fixations
than executed by the observers in Experiment 1. This
suggests an intriguing prediction: Observers might
conservatively pick fixation locations and might
actually perceive farther ahead than suggested by
their saccades. To empirically test this prediction,
Experiment 2 examined maze perception beyond typical
saccades.
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Experiment 1: Does visual
complexity influence eye
movements while mental maze
solving?

Methods

Observers
A total of nine observers participated in the

experiment. Two were authors of this article (S1 and
S2); the rest were naive to the purpose of the experiment
and were compensated for their participation. All
observers had normal or corrected-to-normal visual
acuity.

Apparatus
Stimuli were presented on a 55-in. LG OLED TV at

60 Hz with a resolution of 1,920 × 1,080 pixels. The
viewing distance of the observers was 82 cm and the
display window subtended 70° × 40° of visual angle.
MATLAB software (MathWorks, Natick, MA, USA)
and the Psychophysics Toolbox extensions (Brainard,
1997) were used to present the stimuli. An Eyelink
1000 infrared eye tracker (SR Research, Kanata,
Ontario, Canada) was used to monitor and record eye
movements of the observers monocularly at 1,000 Hz.
The head position of the observers was stabilized using
a forehead- and chin-rest. Fixations were classified
using a parsing algorithm (Geisler, Perry, & Najemnik,
2006) implemented in MATLAB (MathWorks).

Stimuli
Stimuli were composed of 24 images of two-

dimensional mazes (see Figure 1). Each maze was
composed of a 13 × 13 array of square cells and the
side of each cell subtended approximately 1.8° of visual
angle. Mazes varied in terms of the length of the path
and the number of turns along the path. The average
path length was 41 square cells (range: 21–53) while the
average number of turns was 25 (range: 14–38).

Original mazes were generated using an online maze
generator (www.mazegenerator.net) and were modified
using Adobe Photoshop 20 (Adobe, San Jose, CA,
USA) software as follows: (a) Original maze images
had only one exit, which was always located at the
top of the maze at the center. To motivate observers
to mentally solve the maze rather than just passively
view them, two more exits were added to each maze,
and the path was edited so that only one of these exits
was the correct solution. The location of the correct
exit (left, middle, or right) was equally represented
across mazes. (b) Original maze images had multiple

Figure 1. An example of a maze with straight (on the left) and
wavy (on the right) walls. Original mazes were generated using
an online maze generator (www.mazegenerator.net) and were
modified so that all maze images had a single entrance at the
bottom at the center. Three possible exits were always located
at the top, only one of which was the correct solution. Note
that the wavy maze was flipped horizontally.

paths with dead-ends. Having such paths can make the
maze-solving task more cognitively challenging (e.g.,
increased memory load due to a need to remember
previously visited paths while backtracking). Since the
primary focus of this study was to examine perceptual
factors rather than cognitive factors, each maze was
modified to have a single enclosed path. (c) Original
maze images had straight walls. To manipulate the
complexity of mazes, the walls of each maze were
modified to be wavy (see Figure 1). Using the same
maze topology in both conditions ensured that the two
sets of mazes were otherwise equivalent (e.g., in terms
of path length and number of turns). Maze images
with wavy walls were flipped horizontally to minimize
any advantage the observer might get from solving a
maze with the same topology a second time. Observers
reported that they did not notice that same mazes were
used in two conditions.

Procedure
At the beginning of the experiment, observers

received instructions explaining the task and the maze
design (e.g., mazes had a single enclosed path with a
single entrance at the bottom and three possible exits at
the top). Observers were instructed to start solving the
maze at the entrance and to do so as quickly as possible,
relying only on their vision to navigate, without using
any additional means of path tracing. At the start of
each trial, observers fixated a green dot (see Figure 2).
Observers pressed the start key to initiate the trial.
Fixation tolerance was set so that the trial started only
if observers were fixating within 0.5° of the green dot.
Then, a randomly chosen maze image appeared at the
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Figure 2. Maze-solving task sequence. The green dot on the first
frame indicates the entrance location. Observers pressed a key
to initiate the trial and display the maze while fixating at the
green dot. They mentally solved the maze by moving their eyes
and pressed a key to discard the maze. Then, three red dots
were displayed to indicate possible exit locations. Observers
looked at the dot representing the correct exit location and
pressed another key to log their responses. The red dot nearest
the current fixation was highlighted in real time to facilitate
selection of the chosen location. In this example, the observer
is looking at the center dot.

center of the screen, with its entrance at the location
of the previously fixated green dot. Observers were
given unlimited time to solve the maze. After observers
pressed a key to indicate they solved the maze, the image
disappeared, and three red dots appeared on the screen
to mark the locations of possible exits. Observers were
asked to look at the point corresponding to the chosen
exit location and press a key to log their response. The
red dot nearest the current fixation was highlighted in
real time to facilitate selection of the chosen location.

We recorded the fixations made while solving the
maze as the primary measure of performance. The first
fixation, which was always at the entrance of the maze,
was excluded from the analysis.

Trials were blocked by the maze condition (straight
or wavy). The order of blocks was counterbalanced
across observers. Each block consisted of 3 practice
trials and 24 experimental trials. Data from the practice
trials were not included in the analysis. At the start
of each block, observers were required to complete a
9-point calibration routine. If necessary, the calibration
routine could be repeated during the block. If the
observers blinked while solving the maze, the trial was
aborted, the data were discarded, and the observers
were informed. The image from the aborted trial was
repeated later in the experiment. The experiment took
approximately half an hour to complete.

Results

Accuracy
Observers were highly accurate in choosing the

correct exit after solving the mazes, with accuracy levels
above 99%. Although this result is expected because
the maze-solving task was self-paced, it confirms that
observers indeed solved the mazes. There was only one
trial where an observer made an inaccurate response.
Eye movement analysis suggested that the observer
made only two fixations at the start of the maze path
and terminated the trial prematurely. This data point
has been excluded from further analyses.

Path efficiency
Our main hypothesis was that observers will solve

wavy mazes less efficiently than straight mazes due
to a decrease in their ability to see in the periphery.
To measure the efficiency of path traversal, we
computed path efficiency by dividing the path length
of each maze by the number of fixations made by
an observer while solving the maze. Figure 3 shows
the average path efficiency for each observer across
two conditions. A one-way repeated-measures analysis
of variance (ANOVA) revealed a significant effect of
maze condition, F (1, 8) = 17.0, p = 0.003, η2

p = 0.68.
Observers were significantly less efficient while solving
wavy mazes (M = 2.60, SE = 0.12) compared to
straight mazes (M = 2.95, SE = 0.18). This suggests
that observers took shorter “steps” along the path to
solve the wavy mazes, given that the path lengths were
the same across two conditions.

Saccade amplitudes
The above analysis focuses on the efficiency of path

traversal. Given that the path lengths were the same
across conditions, the analysis suggests that observers
took shorter “steps” along the path while solving wavy
mazes compared to straight mazes. We tested whether a
similar relationship also exists in the saccade amplitudes
(i.e., how far the observer moves their eyes in degrees of
visual angle [dva]). It is possible that observers not just
move their eyes less distance along the path, in the wavy
mazes, but also make shorter saccades. For example,
if there is a U-shape portion of the path, an observer
might make a single eye movement from one end of
the U to the other, resulting in a saccade length that is
considerably shorter than the path length between the
two end points.

We measured the saccade amplitudes by computing
the Euclidean distance between two consecutive
fixation locations. Then, we tested whether the average
saccade amplitude differs between two conditions
using a one-way repeated-measures ANOVA. Results
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Figure 3. Average path efficiency in straight and wavy
conditions. Path efficiency was computed by dividing the path
length of each maze by the number of fixations made by an
observer while solving the maze. Light gray dots connected
with lines indicate the average path efficiency for individual
observers; orange and blue dots indicate the average
performance in the straight and wavy conditions, respectively;
and error bars indicate the standard error. Dark gray dots
indicate the performance for S1 and S2, who were also authors
of this article. Observers solved wavy mazes less efficiently
compared to straight mazes on average.

showed a significant effect of maze condition,
F (1, 8) = 6.60, p = 0.03, η2

p = 0.45, suggesting that
observers made shorter saccades while solving wavy
mazes (M = 2.89, SE = 0.17) compared to straight
mazes (M = 3.05, SE = 0.20). This suggests that
observers also traveled “shorter” distances while
choosing their fixation locations in wavy mazes
compared to straight mazes.

Duration of fixations
It is possible that an observer dwells longer at a

given fixation location in order to accumulate more
information and then makes a more informed and
longer saccade. If so, more fixations when solving
the wavy mazes might not indicate greater difficulty
perceiving the path ahead in a more crowded maze. One
should ask, then, whether observers displayed longer
fixation durations for the straight mazes, where they
make longer saccades, compared to wavy mazes.

We computed the average fixation duration in
each trial per observer. We then analyzed these across

two conditions using a one-way repeated-measures
ANOVA, which revealed that fixation durations did
not differ significantly (p > 0.05) between the wavy
(M = 0.20, SE = 0.27) and straight (M = 0.20, SE =
0.29) mazes. These results suggest that the observed
difference in saccade amplitudes cannot be explained
by differences in fixation duration.

Path length
Based on prior work (Crowe et al., 2000), one

would expect the number of fixations to increase as
a function of increasing path length. Figure 4 (left)
shows the median number of fixations observers made
while solving each maze as a function of path length
measured as the number of square cells one has to
travel to solve the maze. In both conditions, the number
of fixations increases as a function of path length,
r(22) = 0.93, p < 0.001 and r(22) = 0.94, p < 0.001, in
straight and wavy conditions, respectively, but wavy
mazes still result in a larger number of fixations than
straight mazes.

Number of turns
An additional interesting question is whether

observers were selective in choosing their fixation
locations along the path. For example, one naive way of
thinking of this problem is to assume that observers
will look at the next turning point while following
the path. Indeed, there is prior evidence that suggests
increasing number of fixations with increasing number
of turns (Crowe et al., 2000). Figure 4 (right) shows
human performance as a function of the number of
turns in each maze. Although the number of fixations
correlated with the number of turns within the path,
r(22) = 0.92, p < 0.001 and r(22) = 0.85, p < 0.001, in
straight and wavy conditions, respectively, observers
still made more fixations while solving mazes with wavy
walls compared to straight walls, which suggests that the
performance cannot be explained just by the number of
turns. While observers make frequent saccades, they do
not necessarily fixate on every turn. Based on fixation
counts, they are consistently able to see farther ahead
than the upcoming turn and saccade accordingly. Taken
together, the differences in the appearance of the maze
walls contributes to performance above and beyond the
factors of path length and number of turns.

Does a model of peripheral vision
make sense of these eye
movements?

To test whether a model of peripheral vision, the
TTM (Balas, et al., 2009; Rosenholtz, Huang, &
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Figure 4. Left: Median number of human fixations as a function of path length for each maze in two conditions. Right: Median number
of human fixations as a function of number of turns for each maze in two conditions. Orange dots represent the straight condition
and the blue dots represent the wavy condition. Lines show least squares fits. Number of fixations increases as the path length and
the number of turns increase in both conditions, but wavy mazes still result in a larger number of fixations than straight mazes on
average.

Ehinger, 2012; Rosenholtz, Huang, Raj et al., 2012), can
be used to make sense of human fixations, we ran model
simulations using themaze images used in Experiment 1.
Specifically, we were interested in measuring how far
ahead the model sees a clear path while fixating a point
along the path, starting from the beginning of the
path (i.e., the entrance of the maze). Assuming that
the model is going to “saccade” to the location where
the path becomes unclear, model simulations were
computed.

For each maze in our stimulus set, we generated
multiple “mongrels” (Balas et al., 2009) using a fixation
point (i.e., first fixation point was always the maze
entrance). “Mongrels” are images that visualize the
information preserved and lost in peripheral vision,
according to the model. The visualizations generated
from a single maze and fixation point can show some
variability. Information that is clearly available in
multiple mongrels—such as whether the maze path
continues in a certain direction—the model predicts is
readily available to peripheral vision. Figure 5 shows
an example maze with three mongrel images. After
inspecting each mongrel image, we chose the next
fixation point by tracing the path starting from the
current fixation point and checking how far a path was
clearly visible. When there was a point where multiple
routes were possible or the path appeared blocked, we
marked this point where the path became unclear, and
then we chose to have a new fixation. Using this new
point as the next fixation point, we generated a new
set of mongrel images of the original maze image and
repeated the same procedure until the model traveled

the entire path and the last model fixation led to a clear
view of the exit. The number of simulated fixations
for each maze was counted as the predicted number
of fixations required to solve that maze. This whole
process took several hours to complete as the model
simulations took quite a long time to generate the next
set of simulated images given the previous fixations;
this serial process of iterating between slow model
syntheses and human input required using the authors
to select the next model fixation rather than having
naive subjects make this judgment in an experimental
setup.

Results

The model predicted significantly more fixations
in the wavy maze condition (M = 7.04, SE = 0.41)
compared to the straight maze condition (M = 5.29,
SE = 0.30), t(23) = 9.08, p < 0.001, d = 1.85. Figure 6
shows the number of model fixations versus human
fixations for each maze in the straight and wavy
conditions. The model underpredicted the number of
fixations required to solve mazes in both conditions.
We will discuss possible reasons for this later in the
Discussion section. However, the number of model
fixations correlates with the number of human fixations
both in the wavy condition, r(46) = 0.69, p < 0.001,
and in the straight condition, r(46) = 0.76, p < 0.001,
suggesting that perceptually difficult mazes for humans
were also difficult for the model.
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Figure 5. Mongrel images generated from a single maze image with straight (top row) and wavy (bottom row) walls. Fixation locations
are represented with a red point and the possible clear paths are represented with red lines (the red points/lines are used for
demonstration proposes and were not visible to the model).

Figure 6. Human versus model fixations in the straight (orange)
and wavy (blue) conditions. Each data point represents the
average data for a single maze. Lines represent the least
squares fits.

Experiment 2: Can observers
perceive paths farther along than
their fixations?

Results of the model simulations underpredicted
the number of fixations required to solve mazes. This
finding could be due to several different factors. First,
it is possible that TTM makes poor predictions for
this type of stimuli and task. Earlier implementations
of TTM successfully predicted crowding performance
for recognition tasks using simple stimuli such as
letters and symbols (Balas et al., 2009; Keshvari &
Rosenholtz, 2016; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, et al., 2012), or getting the gist
of a real-world scene (Ehinger & Rosenholtz, 2016).
Possibly the summary statistics computed by TTM
require updating to deal with maze-like stimuli. Second,
although the TTM accounts for the information fall-off
in the periphery, other factors could influence task
performance (e.g., motivation, fatigue, etc.). Third, it is
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possible that the visual system might be conservative;
in other words, observers can see farther along the
path than indicated by their fixation locations. On the
one hand, in sparse displays, when the observer makes
a saccade toward a single isolated target, saccades
tend to predominantly land on the target (Kowler &
Blaser, 1995). On the other hand, for denser displays,
such as 1/f noise (e.g., Najemnik & Geisler, 2005) or
natural scenes (e.g., Henderson & Hollingworth, 1998),
saccades tend to be limited in their length. What we
observed in our data aligns closely with the saccade
lengths in the latter.

Note that due to the importance of path length in
maze solving, our measure of path efficiency quantifies
saccade length along the path of the maze, not in dva
“as the crow flies.” Observers saccade on average 2.6
units along the maze path, whereas the model predicted
observers could make an average saccade of 7.1 units
along the path.

In Experiment 2, we ask whether observers can
make correct judgments about the path at those more
distant model fixations. If so, that implies that observed
saccade lengths underrepresent ability to perceive the
maze at a glance.

Methods

Observers
A total of nine observers participated in the

experiment. Observers were naive to the purpose
of the experiment and were compensated for
their participation. All observers had normal or
corrected-to-normal visual acuity.

Apparatus
Stimuli were presented on a 27-in. BenQ monitor

at 60 Hz with a resolution of 3,840 × 2,160 pixels.
The viewing distance of the observers was 70 cm and
the display window subtended 26° × 46° of visual
angle. MATLAB software (MathWorks) and the
Psychophysics Toolbox extensions (Brainard, 1997)
were used to present the stimuli. An Eyelink 1000
infrared eye tracker (SR Research) was used to monitor
and record observers’ eye movements monocularly at
1,000 Hz. Observers’ head position was stabilized using
a forehead- and chin-rest.

Stimuli
The same maze images used in Experiment 1 were

also used in Experiment 2. Since the goal of the
experiment was to test whether observers can perceive
the peripheral path at locations where the model fixated,
rather than to compare straight versus wavy mazes,

we only used mazes from the straight condition. A
black disk was used to indicate the target location (see
Figure 8). The size of target disk was 1° of visual angle.

The target and fixation locations were given by
the model simulations and varied for each stimulus
(except for the first fixation location that was always at
the entrance of the maze). For each maze, the model
fixation n was used as the on-path target location while
the observer fixated the previous model fixation (n − 1).
For each on-path target location, we picked an off-path
target location by randomly choosing from the eight
surrounding cells, with the restriction that the chosen
location was off the path.

Procedure
At the start of the experiment, observers were

provided with a set of instructions on the screen
explaining the task, the maze design (e.g., there is only
one enclosed path that starts at the bottom and moves
toward to top where there is an exit), and other task
procedures accompanied by Figure 7, which explained
the on-path and off-path manipulation. We used a
two-interval forced-choice task. At the start of each
trial, observers fixated a green dot representing the
fixation location (see Figure 8). Observers initiated the
trial by pressing the start key. The trial started only
if observers were fixating within 0.5° of the fixation
location. After a random stimulus-onset asynchrony
(SOA) ranging from 100 to 300 ms. The stimulus
sequence consisted of two stimulus displays presented
for 500 ms each, with a blank gray display in between
presented for 800 ms. One of the two stimulus displays
contained amaze image with an on-path target while the
other contained the same maze image with an off-path
target. The task was to decide which of two stimulus
displays contained the maze with the on-path target
while maintaining fixation. Observers were required
to maintain fixation while the green fixation dot was

Figure 7. The image used during the instruction phase to
explain the on-path and off-path manipulation. Red dashed line
was used to indicate the path and was only shown during the
instructions. In this example, the path length between the
fixation dot and the target was eight cells.
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Figure 8. Detection task sequence. A green dot indicating the fixation location was presented on the screen. Observers pressed a key
to initiate the trial while keeping their fixation. After a random SOA (100 to 300 ms), two stimulus displays presented for 500 ms each,
with a blank gray display in between presented for 800 ms. Each maze image had an embedded target (black disk) either at an
on-path or an off-path location. Observers responded with a key press to indicate which display had the on-path target.

on the screen (i.e., for the duration of two stimulus
displays plus the gray screen in between). Observers
were instructed to respond by key press as quickly and
as accurately as possible. The response keys for first or
second display judgments were counterbalanced across
observers. The order of on-path and off-path stimulus
was randomized for each trial across participants,
as well as the order of trials. To minimize the effects
of seeing the same maze stimuli multiple times, the
maze image as well as the on-path and off-path stimuli
were randomly flipped horizontally in each trial. The
accuracy of the response was determined by comparing
the selected interval to the target interval and was the
primary measure of analysis.

Model simulations for the straight mazes resulted
in a total of 103 fixations, combined across 24 mazes.
For six of these fixations, it was not possible to choose
an off-path location so these fixations were excluded,
resulting in 97 testable model fixations. Trials were
randomly ordered; repeated three times, resulting
in three blocks and a total of 291 trials; and took
approximately an hour to complete.

Observers completed 30 practice trials at the
beginning of the experiment to familiarize themselves
with the general task procedure. To ensure that
observers were comfortable with maintaining
fixations, the practice trials were repeated until all
were completed without any break of fixations.

Data from the practice trials were excluded from the
analysis.

At the start of each block, observers were required
to complete a 9-point calibration routine. If necessary,
the calibration routine could be repeated during the
block. If an eye movement or a blink was detected
during stimulus presentation, the trial was aborted
immediately, the response was not collected, and the
observers were informed. The stimulus from the aborted
trial was repeated later in the experiment.

Results

Sensitivity
The main goal of Experiment 2 was to test whether

observers were above chance levels in classifying targets
placed on locations at larger distances than they
saccade to. We computed the average sensitivity of each
observer in detecting targets using d′ given by

d ′ = �−1(H) − �−1(F)

where H is the hit rate, F is the false alarm rate, and
�−1 is the inverse cumulative distribution function of
the normal distribution. The performance at the chance
level would be 50% accuracy (or d′ = 0). All observers
performed above chance levels. We chose a higher
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Figure 9. Left: Average accuracy as a function of path distance ratio (i.e., the ratio of the path distance of the target to the average
saccade length for each maze). Right: Average accuracy as a function of eccentricity ratio (i.e., the ratio of eccentricity of the target to
average saccade length for each maze) using on-path stimuli. Blue dots represent average accuracy for each target-fixation pair. Lines
represent the least squares fits. Note that, a value of 4 on the x-axis implies that observers made a judgment about the path at an
eccentricity four times greater than their typical saccade length for that maze.

performance level to be more conservative and tested
the performance against d′ = 1 (69% accuracy) with a
one-sample t-test, which revealed that the average d′ (M
= 2.09, SE = 0.09) was above 1, t(8) = 12.27, p < 0.001,
d = 4.09. These findings suggest that observers were
highly accurate in detecting targets placed at locations
at greater distances than their typical saccade lengths.

Target distance
We also analyzed how performance changes as

a function of target distance, that is, the distance
between the target location and the fixation location,
using the on-path stimuli. We expected a decrease
in average accuracy as a function of an increase in
target distance. We quantified target distance in two
ways: path distance and eccentricity. Path distance was
computed by counting the number of cells along the
path between the fixation point and the target point.
Eccentricity was computed by quantifying the distance
between the target point and the fixation point in
dva.

Then, we compared the size of these target distances
to typical saccade lengths from Experiment 1 by
computing ratios as follows. Path distance ratio was
computed by taking the ratio of path distance to the
average saccade length in units of cell (given by the path
efficiency measure). Eccentricity ratio was computed
by taking the ratio of eccentricity to average saccade
amplitude in dva. If the ratio is close to 1, it suggests
that the target was positioned at a distance similar to
the average length of a saccade. If the ratio is larger
than 1, it suggested that the target was positioned

at a distance larger than the average length of a
saccade.

Figure 9 shows performance as a function of path
distance ratio and eccentricity ratio. Blue dots represent
average accuracy for each target-fixation pair. A value
of 4 implies that observers made a judgment about the
path at an eccentricity four times greater than their
typical saccade length for that maze. Average accuracy
decreases as path distance ratio increases, r(95)= −0.51,
p < 0.001, and as the eccentricity ratio increases, r(95)
= −0.22, p = 0.03. The Fisher-transformed z-scores
indicated a significant difference in the observed
correlations, z = −2.41, p < 0.05. These findings suggest
that observers can classify maze locations as being on
or off the solution path when those locations appear at
a greater distance than typical saccades.

Discussion

Mentally solving a maze requires following a path
that connects an entrance to an exit without physically
marking it. Anticipating the next eye movement requires
getting a sense of the path beyond the current point of
gaze, a process that involves peripheral vision. When
the path ahead is cluttered, the visual system might
have less confidence about the path direction farther
ahead, leading the observer to execute shorter saccades.
Motivated by these insights, the goal of the present
study was to investigate the role of peripheral vision in
a mental maze-solving task. We tested the impact of
visual crowding on the efficacy of mental maze-solving,
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using behavioral experiments and modeling simulations.
Our results suggest that peripheral vision facilitates
mental maze-solving. Our main findings are as
follows:

First, mazes characterized by increased visual
complexity, achieved by altering the appearance of
maze walls, forced observers to be make shorter
saccades along the path, leading to more fixations to
solve the maze, for a given path. These results agree
with intuitions about crowding, in which additional
complexity or clutter lead to poorer peripheral
performance, which in maze-solving would lead to
greater uncertainty as to the upcoming path.

Second, the crowding effects observed in
Experiment 1 were confirmed by a model of peripheral
vision. The simulation of the mental maze-solving
task using the TTM (Balas et al., 2009; Ehinger &
Rosenholtz, 2016; Keshvari & Rosenholtz, 2016;
Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz,
Huang, Raj, et al., 2012; Zhang et al., 2015) showed that
the model made more fixations for the wavy mazes than
for the straight. However, the model made considerably
fewer fixations compared to humans.

The variance in the fixation counts between human
and model performance could be due in part to the
lack of prior testing of TTM on similar stimuli. Prior
applications of the TTM predominantly used letters
or symbols accompanied by simple recognition tasks
(Balas et al., 2009; Keshvari & Rosenholtz, 2016;
Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz,
Huang, Raj, et al., 2012), or natural scenes and scene
gist tasks (Ehinger & Rosenholtz, 2016). However,
aspects of the saccade planning system may provide a
more parsimonious explanation. For example, human
searchers tend to make shorter saccades than model
searchers in certain conditions (Najemnik & Geisler,
2009). Making an error and deviating from the path
would delay maze-solving, whereas saccades take
little time. This may lead the visual system to adopt a
conservative approach to selecting fixation locations.

Experiment 2 provided evidence for conservative
fixation selection. Human observers were indeed
capable of perceiving the difference between on- and
off-path targets positioned at the greater distance
suggested by the model fixations, even though those
fixations were on average 4.5 units farther along
the path than the observer fixations (a 170% greater
distance along the path, on average).

Further analysis of data from Experiment 2
demonstrated that ability to judge whether a peripheral
target lay on the path decreased as a function of the
path length, measured in terms of number of square
cells between the target and fixation locations. While
performance also decreased as a function of eccentricity
of the target, the effect was considerably weaker. This
result is consistent with previous work showing that
time to solve a curve-following task (Jolicoeur et al.,

1986) or a maze task (Crowe et al., 2000) depends on
path length.

It might be true that observers in our study preferred
to make additional eye movements while solving mazes
rather than relying on difficult peripheral judgments.
The costs associated with making eye movements
were minimal, given that the task was self-paced.
Imposing a time limit or limiting the possible number
of eye movements observers could make would be
an interesting manipulation to see whether observers
would make larger saccades and less fixations, which
can be addressed by future research.

Our study shows evidence that peripheral vision
is an important factor in mental maze-solving. The
peripheral vision model not only predicts the difference
in difficulty between wavy and straight mazes but also
shows promise at predicting the distance along the maze
path that an observer can perceive whether a point lies
on or off the path. However, one cannot merely go
directly from the peripheral vision model—nor from
empirical measurements of the difficulty perceiving the
path ahead using peripheral vision—to predicting the
time and number of saccades required for an observer
to solve a given maze. Rather, it is clear that one
needs to understand decision processes and trade-offs
involved in the visual system choosing the next fixation.
Such trade-offs may, for instance, limit saccade length
in maze-solving even when the observer can see farther
along the path.

While the present study provides valuable insights
into the role of peripheral vision in mental maze
solving, it offers opportunities for future work. Notably,
mazes used in these sets of experiments were simplified,
featuring only a single enclosed path. Likewise, the
manipulation of visual complexity was accomplished
by merely altering the appearance of the maze walls
in a simple and automatable way. This design choice
was motivated by the intention to start with a simple
approach before transitioning to more complex stimuli
and tasks. Increasing cognitive, as well as visual, maze
complexity by introducing additional branches or visual
elements holds the potential to facilitate investigations
into way-finding and backtracking behavior. Such
extensions can enrich our comprehension of the
involvement of peripheral vision in the context of
maze-solving. It is our intent to address these facets
through future research.

In summary, our findings make a substantive
contribution to the existing body of literature
pertaining to peripheral vision, visual crowding, and
mental maze-solving. Many past studies of crowding
have focused on particular peripheral tasks (e.g.,
peripheral object detection) or full-field tasks (e.g.,
scene perception). Much of the time, peripheral vision
likely serves as one step in a multistep process, like using
peripheral information to aid visual search (Rosenholtz,
Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj, et al.,
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2012) or find one’s way through a maze. In previous
investigations of mazes, we demonstrated that various
perceptual attributes of maze design, including path
length, thickness, and rendering of paths and walls,
significantly impact maze-solving performance, thus
implicating the role of crowding and visual complexity
(Yu et al., 2019). Building upon this foundation,
the present study combined eye tracking, modeling
simulations, and targeted peripheral experiments to
provide additional support to the notion that visual
crowding significantly constrains the efficacy of mental
maze-solving.

Keywords: peripheral vision, crowding, mental
maze-solving
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