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The color of fruits in photographs and still life paintings
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Still life paintings comprise a wealth of data on visual
perception. Prior work has shown that the color
statistics of objects show a marked bias for warm colors.
Here, we ask about the relative chromatic contrast of
these object-associated colors compared with
background colors in still life paintings. We reasoned
that, owing to the memory color effect, where the color
of familiar objects is perceived more saturated, warm
colors will be relatively more saturated than cool colors
in still life paintings as compared with photographs. We
analyzed color in 108 slides of still life paintings of fruit
from the teaching slide collection of the Fogg University
Art Museum and 41 color-calibrated photographs of
fruit from the McGill data set. The results show that the
relatively higher chromatic contrast of warm colors was
greater for paintings compared with photographs,
consistent with the hypothesis.

Introduction

Color is both a stimulus and a response. As
a stimulus, color starts with the transduction of
visible light by three types of cone photoreceptors
(Stockman & Brainard, 2010). These retinal signals
are then processed by an extensive network that
engages subcortical circuits and many regions of the
cerebral cortex that interpret the retinal signals in
the context of prior experience, expectations, and
behavioral objectives (Conway, 2009; Conway, 2018).
Conscious experience is presumably the outcome of
this neural activation; and color provides a promising
tool for exploring the linkage of neural activity and
consciousness (Bannert & Bartels, 2018; Elliott & Cao,
2013; Siuda-Krzywicka & Bartolomeo, 2020; Witzel &
Gegenfurtner, 2018). Herein we analyze the way color
is represented in still life paintings to test how prior
knowledge impacts color perception. We include an
analysis of the variance of chromatic and luminance
contrast (Penacchio, Haigh, Ross, Ferguson, & Wilkins,
2021).

Subjects who are asked to reproduce the color of
familiar objects consistently choose a color that is more
characteristic of the dominant chromatic attribute of
the object (Bartleson, 1960). This “memory color” is
typically more saturated than the color of real objects
(Hunt, 1987; Newhall, Burnham, & Clark, 1957; Siple
& Springer, 1983), and may modulate perception of
objectively rendered images of familiar objects. For
example, an achromatic photograph of a banana might
appear to some observers as slightly yellowish (Hansen,
Olkkonen, Walter, & Gegenfurtner, 2006). Such
“memory color effects” were suggested by Hermann
Helmholtz and later invoked by Ewald Hering, who
described objects as appearing through the “spectacles
of memory colors” (Yendrikhovskij, Blommaert, & de
Ridder, 1999).

The memory color effect is evidence of what might
be a more general computational goal of vision,
that of idealization, by which the brain computes an
idealized concept that reflects the distinct, diagnostic
features of behaviorally relevant objects (Martin,
2007). Accordingly, the concept of “banana” is defined
by both a crescent shape and the color yellow, and
it may reside in the mind’s eye as more crescent-like
and more saturated than any real banana (Bartleson,
1960; Tanaka, Weiskopf, & Williams, 2001). When
tasked with adjusting an image of a banana to
appear gray, participants tend to render it objectively
bluish (Hansen et al., 2006), as if some subtle color
complementary to the normal color of the banana is
required to counteract the memory color effect that
tints the perception of an achromatic banana slightly
yellowish. The veracity of memory color effects has
been challenged (Firestone & Scholl, 2016), but these
effects have been reproduced, albeit with variable
expression depending on the realism of the rendering of
shape and texture (Olkkonen, Hansen, & Gegenfurtner,
2008; Vurro, Ling, & Hurlbert, 2013) and the extent to
which the colors of the objects align with the daylight
locus (Witzel, Valkova, Hansen, & Gegenfurtner, 2011).

We sought to test the impact of color–shape
knowledge on still life painting, reasoning that, during

Citation: Hansen, T., & Conway, B. R. (2024). The color of fruits in photographs and still life paintings. Journal of Vision, 24(5):1,
1–15, https://doi.org/10.1167/jov.24.5.1.

https://doi.org/10.1167/jov.24.5.1 Received October 11, 2023; published May 1, 2024 ISSN 1534-7362 Copyright 2024 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.Downloaded from intl.iovs.org on 05/03/2024

mailto:thorsten.hansen@psychol.uni-giessen.de
mailto:bevil@nih.gov
https://doi.org/10.1167/jov.24.5.1
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2024) 24(5):1, 1–15 Hansen & Conway 2

the act of painting, the artist must hold in memory, even
if for brief periods of time, the colors associated with
the fruits they are painting. We hypothesize that artists
are painting these memories, and because the colors
of memories are more vivid than those in real life, we
predicted that the subject of the still life paintings—the
fruit—will have relatively higher saturation than real
fruit. This hypothesis can be understood by analogy
with the over emphasis of lines in drawings (Conway,
2022). The visual system encodes object shapes by
their boundaries, so the ideas of objects in our minds
are defined by lines, which then explains why lines
can be used to represent object shape (Livingstone,
2002; Sayim & Cavanagh, 2011). The consequence is
that lines are more prominent in rendered depictions
than they are in the retinal image. Here, we argue that
an object concept is defined not only by its distinct
form (represented by lines), but also by its specific hue
(impressed in the mind by its saturation), and these two
aspects of the concept leave a trace in the artists’ work.
The parts of scenes labeled as objects are more likely to
be warm colored compared with backgrounds (Ling,
Vurro, & Hurlbert, 2008; Rosenthal et al., 2018). We
leverage this observation to test the hypothesis, using
warm-colors as a proxy of “fruit” and cool colors as a
proxy for “backgrounds”. We find that the chromatic
contrast (or chroma) of warm-colored pixels compared
with other pixels is higher in paintings compared with
photographs of fruit.

Methods
Image data sets

We used images from two data sets of fruits in still
life paintings and photographs: The images of still life
paintings were obtained from the Fogg Art Museum
and the photographs of the fruits were obtained from
the McGill calibrated color image database (Olmos &
Kingdom, 2004). The Fogg Art Museum is attached
to Harvard University; the slides are used in art
history lectures and were generated by art historians
to accurately represent the color in the paintings. We
attempted to identify all slides in the collection that
were of paintings depicting fruit, regardless of date,
artist, style, or location. The slides were digitized for
further analysis using a Nikon LS 4000 ED (Super
Coolscan 4000 ED) film scanner and stored as TIFF
images. We cropped the images to remove any frame
or outside border and stored them as PNG images;
all remaining pixels in the slides were included in the
analysis. We used 108 images of paintings as detailed in
Appendix A.

The McGill calibrated color image database contains
708 images that are 768 × 576 pixels, grouped into
nine categories: animals, flowers, foliage, fruits, land

and water, man-made, shadows, snow, and textures.
We selected just the 41 images of fruit for analysis. The
images are stored as standard RGB images in TIFF.

Color space

Images of both data sets were analyzed in the same
way. Some of these details have been described
previously (Hansen & Gegenfurtner, 2009) and are
paraphrased here for ease of reference. First, we
converted RGB images to the DKL color space. DKL is
a cone-opponent space of an achromatic signal L/M/S
and two chromatic signals L/M and S, corresponding
with the chromatic preferences of retinal ganglion cells
and cells in the lateral geniculate nucleus (Derrington,
Krauskopf, & Lennie, 1984). Next, we computed joint
histograms for each of the three possible pairs of
image planes L/M/S and L/M, L/M/S and S, and the
isoluminant plane L/M and S. Note that there are two
common naming conventions for the DKL axes, either
in terms of lights or mechanisms. We used the lights
convention here instead of the mechanisms convention
where the axes are labeled L + M, L − M and S –
(L + M).

Joint histograms

We computed the joint histograms by discretizing the
DKL plane into 128 × 128 bins ranging from −2 to 2
along each axis, projecting all image pixels represented
in DKL to the respective plane and counting the
number of pixels that fall into each bin. We normalized
the joint histograms by the number of pixels in the
image such that the histograms become independent
of image size. For each data set, we computed joint
histograms for each image and the mean histogram for
all images for each of the three DKL planes. We also
computed a “chromogram,” where we colored each
bin with the mean of all pixels that fall into the bin
(Figure 2, second row).

Chromatic contrast curves

To further analyze and compare the histograms
we computed chromatic contrast curves for different
quadrants of the histograms. To compute chromatic
contrast curves, we computed the chromatic contrast
for each bin as the distance to the origin (0, 0) and then
summed the bins with the same chromatic contrast. We
rounded the chromatic contrast to the 4th significant
digit, resulting in 1,464 unique values of the chromatic
contrast. The chromatic contrast curve shows for each
chromatic contrast in the plane the relative number
of pixels in the image. We normalized the chromatic
contrast curves with the number of bins in the given
quadrant. This allows us to compare quadrants of
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different sizes, for example, the quadrant 1 against the
combined quadrants 2, 3, and 4. Finally, contrast curves
were smoothed by convolution with a 1-D Gaussian
with a standard deviation of 10.

Confidence intervals for chromatic contrast
curves

We used a bootstrap analysis to compute confidence
intervals for chromatic contrast curves (Figures 3D
and E, 5D and E, and 6D and E). First, we computed
the chromatic contrast curves for each image. Next,
we randomly sampled N chromatic contrast curves
(N being the number of images in the data set) and
computed the mean chromatic contrast curve. This
process was repeated 1,000 times. From the resulting
1,000 mean chromatic contrast curves we compute
the 95% confidence interval by sorting the curves and
picking the 25th and 975th curves.

Segmentation of the fruits

The cut-out of the fruits shown in Figure 4 were
generated manually with Matlab’s Image Segmenter
and method “Draw ROIs” (regions of interest).

Analysis of local chromatic and achromatic
differences

The analysis of the achromatic and chromatic
contrast follows the procedure described by Penaccchio
et al. (2021) to compute chromaticity differences.
First, we cropped the central square of the image and
resized it to 256 × 256 pixels using The Matlab Inc
(2019) function imresize with bicubic interpolation.
Next, we converted the images to the CIE LUV color
space using Matlab’s functions makecform (with
arguments srgb2xyz and xyz2upvpl) and applycform.
We computed the local chromatic difference as the mean
Euclidean distance between the central pixel and its
eight neighboring pixels in the (u′, v′) plane. Similarly,
we computed the local achromatic difference as the
mean Euclidean distance between the central pixel and
its eight neighboring pixels in the L plane. Finally,
we computed the average chromatic and achromatic
difference for each image as the mean local difference
of all pixels.

The images and analysis scripts are provided at
doi:10.6084/m9.figshare.25504717.

Results

We analyzed color in 108 slides of still life
paintings (Table S1 provides the list of works), and 41

A

B

Figure 1. Sample images of the fruit paintings (A) and
photographs (B).

color-calibrated photographs of fruit from the McGill
Color Calibrated Database (see Methods), examples of
which are shown in Figure 1.

The pixel values of each image, photograph
or painting, were analyzed by transforming the
chromaticity values into the cone-opponent DKL color
space that the retina and lateral geniculate nucleus are
thought to use to encode the cone signals (see Methods
for details). We used the DKL space because the axis
are defined in a physiologically meaningful way and it
is well-suited for predicting saturation in natural scenes
(Schiller & Gegenfurtner, 2016). Figure 2 shows this
analysis for a still life painting by Cezanne (Still Life
with Cherries and Peaches, 1887). The top row shows
the input image as represented by the two chromatic
axes L/M and S and the achromatic axis L/M/S of
the DKL color space. The second row shows the
distribution of the mean colors in the image projected
to the three cardinal planes of DKL. The painting did
not have a uniform representation of colors across
color space. Instead, there were more pixels with colors
in quadrants 1 and 3 of plots with axes of S versus L/M
(left), and more dark colors than light colors (middle).
This distribution of colors is similar to biases found in
natural images (Webster & Mollon, 1997).

To investigate the distribution of fruit color in
paintings and photographs, we computed the joint
histograms for the two chromatic DKL axes L/M
and S, averaged across all paintings (Figure 3A) and
photographs (Figure 3B). The joint histograms shown
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Figure 2. Images analysis for a sample image. (A) Input image. (B) Activation along the three axes of DKL space: achromatic L/M/S,
chromatic teal-cherry L/M, chromatic violet-lime S. (C) Joint distribution of image pixels in the three possible pairs of DKL axes. (Top)
The color is the mean of the colors of all pixels of the input image that fall into the respective bin. (Bottom) The gray level denotes the
number of pixels of the input image that fall into the respective bin. The darker the gray level, the more pixels fall into the bin.

throughout the article bin every pixel of the image
as projected to the respective plane. We averaged the
individual joint histograms by taking the mean of each
bin. In both paintings and photographs, there is a
strong bias for pixels in quadrants 1 and 3, as for the
example image (Figure 2).

To investigate the memory color effect in paintings
we focused on the relative distribution of pixels in the
quadrant that contains fruit-colored pixels (quadrant
1, demarcated with the red arc, containing red, orange,
and yellow colors) (Figures 3A and 3B) versus the
three other quadrants (the black arc). The bottom
of Figure 3 shows the relative number of pixels as
a function of chromatic contrast. We confirm that
fruit colors predominantly lie in the first quadrant by
determining the joint distribution of image pixels of ten
fruits chosen randomly from the paintings: The joint
distributions show a strong bias for quadrant 1, the
warm red–orange–yellow colors (Figure 4).

The number of relatively saturated pixels is greater
in quadrant 1 than the other quadrants, for both
paintings (Figure 3D) and photographs (Figure 3E;

the red line extends further to the right of the black
line and sits above it). This result shows that, in
both paintings and photographs, the fruit colors are
relatively more saturated. But the results also show
that the relative difference of the number of saturated
pixels in quadrant 1 versus the other quadrants is
greater for the paintings than the photographs (the
red line is further from the black line for the paintings
than the photographs) (Figures 3D and 3E). This
result is quantified in Figure 3F, in which the pink
trace depicts for the paintings the relative difference in
the number of pixels at each chromatic-contrast level
for pixels in quadrant 1 versus the other quadrants,
and the blue trace shows the same quantity for the
photographs. A comparison of Figures 3A and 3B also
shows a relative increase in purple (quadrant IV) in the
paintings compared with the photographs, which may
be explained by the increase of violet pigment in the
late 19th century (Reutersvärd, 1950).

Prior work has shown that the parts of scenes that
are more likely to be labeled as objects are warm
colored rather than cool colored, for both natural
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Figure 3. Analysis of color distribution in the DKL isoluminant plane for paintings vs. photographs of fruits. Joint histogram for all
paintings (A) and the photographs (B). The unit circle is color-coded with the two sets of quadrants analyzed in (D) and (E). (C)
Projection of the RGB color cube to the L/M–S plane. Normalized histogram of chromatic contrast for the "fruit" quadrant Q1 (red) vs.
the other three quadrants Q234 (black) for the paintings (D) and the photographs (E). The light red and gray shaded areas indicate the
95% confidence interval. (F) Difference between the red and black curves in (D) and (E) for the paintings (pink) and photographs (blue).

objects and artificial objects (Rosenthal et al., 2018).
Accordingly, to test the hypothesis that objects are
relatively more saturated than backgrounds in still life
paintings, we computed the joint histograms for the
L/M vs L/M/S plane. We found that the warm +L/M
colors are relatively more saturated than the cool colors
(Figure 5).

We note that the results are also consistent with
the conclusion that cool colors, typically associated
with backgrounds, are relatively less saturated in the
paintings. Blue is a commonly preferred color (Eysenck,
1941; McManus, Jones, & Cottrell, 1981; Palmer &
Schloss, 2010), so if the effect we found for “warm”
colors simply reflects color preference, it should also

show up for the “blue” pixels. To test this hypothesis, we
computed the joint histograms for the S plane versus
the L/M/S plane and evaluated the relative chromatic
contrast of pixels in the “blue” quadrant (Figure 6). As
shown in Figure 6, the relative chromatic contrast of
blue pixels versus other colored pixels is no greater for
paintings than photographs. We conclude that the effect
we found is specific for colors in the first quadrant and
cannot be explained by color preference.

Finally, we analyzed the chromatic and achromatic
differences across the images, inspired by prior work
that hypothesizes that visual discomfort is related to
the local differences in luminance and chromaticity
across an image (Penacchio et al., 2021). Penacchio
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Figure 4. Joint distribution of image pixels of cut-outs of ten fruits chosen randomly from the paintings. The circle denotes unit
contrast in the L/M vs. S plane. The results show that the pixels are disproportionately located in quadrant 1, supporting the
contention that warm-colored pixels are a proxy for objects.

et al. found support for this hypothesis in paintings
and photographs of natural scenes, with a notable
exception of fruit. The data set we analyzed is enriched
for representations of fruit, providing an opportunity
to further explore this potential exception and the
generalizability of the hypothesis. Figure 7 shows
for the still life paintings and the photographs the
differences in CIE chromaticity (L, u′, and v′; as done
by Penacchio et al.). The mean achromatic vs chromatic
differences for photographs and paintings are indicated
by the large crosses. The achromatic and chromatic
differences are highly correlated for photographs, r =
0.68; p < 1e-6, but not for paintings, r = 0.007; p =
0.48, suggesting that a cognitive act of the artists is
engaged to decouple color contrast from luminance
contrast. The results also suggest that paintings made
more recently (more contemporary vs. baroque) have
higher achromatic contrast (the blue dots to the right
of the convex hull for the photographs). In addition, it
also seems that paintings of a single painter sometimes

cluster (like for Jan Davidsz. De Heem, the yellow dots
around [0.01, 0.015]), suggesting that this parameter
may reflect an artistic fingerprint. Interestingly, the
outlier of the Baroque paintings is Caravaggio’s Basket
of Fruit, which is the only painting that Caravaggio
painted with a light background.

Discussion

In the 17th century, the French Academy instituted
a ranking of painting themes (Félibien, 1676). Still
life painting was considered the least important, after
history painting, portraiture, scenes of everyday life,
and landscapes. Its rank reflected the view that still
life painting is not the best vehicle to express the most
important ideas of human experience. Instead, still
life painting was undertaken as an exercise to work
out how to paint—not just to see, but to observe. As
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Figure 5. Analysis of color distribution in the L/M–L/M/S plane for paintings vs. photographs of fruits. Format is the same as
in Figure 3. The dark spots in the histogram of the fruit photographs result from the cyan box shown as the second image in Figure 1B.

such, still life paintings comprise a wealth of data that
may be especially valuable for understanding visual
perception (Toscani, Wolf, Gegenfurtner, & Braun,
2023). Herein, we analyzed the relative chromatic
contrast of fruit versus background in still life paintings
and photographs, using warm-colored pixels as a
proxy of fruit and cool-colored pixels as a proxy for
backgrounds (Rosenthal et al., 2018). The results
show that the warm-colored regions of both paintings
and photographs have relatively higher chromatic
contrast than the cool-colored regions, and this relative
difference is greater for the paintings, supporting the
hypothesis that artists, on average, use relatively higher
chromatic contrast to represent fruit.

Our project is motivated by questions regarding
the relationship of color and shape and how this
information is computed by the brain to form object
concepts. On the one hand, several observations imply
that the brain has separate circuits for computing color
and shape. Human toddlers show a different time course

for learning about colors and shapes (Wilcox, 1999;
Prevor & Diamond, 2005), and adults can readily make
independent reports about the color and the shape of
objects. On the other hand, color appearance depends
upon the spatial structure of the retinal image—the
shape and arrangement of colors somewhat determine
their appearance (Chevreul, 1854; Conway, 2001; Land,
1977). The semantic meaning of a color is similarly
dependent on the shape context. Red can mean anger
or love, depending on the shape it is attached to. One
hypothesis is that the shape–contingency of color
appearance is accomplished through experience, an idea
that has been tested by evaluating cognitive penetration
(Pylyshyn, 1999). According to cognitive penetration,
knowledge of the colors of color-associated shapes
impacts the perception of the colors of the shapes even
when the shapes are rendered objectively colorless, for
example, as a gray photograph.

Prior work has shown that achromatic renderings
of familiar fruits tend to appear slightly colored
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Figure 6. The frequency of “blue” pixels is almost identical in still-life paintings of fruit and photographs of fruit. Analysis of color
distribution in the S–L/M/S plane for paintings vs. photographs of fruits. Format is the same as for Figure 3. The “blue” pixels plot in
Quadrant 3.

with the typical color of the fruits (Hansen et al.,
2006; Olkkonen et al., 2008). Participants tasked with
adjusting digitally displayed colored images of fruit to
appear achromatic tend to render the objects objectively
colored, with a color that is roughly complementary
to the typical color of the object. The explanation has
been that this additional color is required to cancel
the implicit memory color that unavoidably tints an
achromatic rendering of a familiarly colored object.
We reasoned that artists making paintings of still life
paintings must hold in memory, even if briefly, the color
of the objects they are looking at while painting, and
this memory engagement, including the knowledge of
the colors of the objects they are painting, impacts how
they render the things they paint.

The idea that cognition affects perception has been
challenged (Firestone & Scholl, 2016); the star piece

of evidence in the challenge is the so-called El Greco
fallacy (Firestone, 2013). As Firestone recounts, an
ophthalmologist in 1913 suggested that distortions
akin to those characteristic elongations in El Greco’s
paintings could be achieved by an astigmatic lens. The
doctor recognized that an astigmatism in El Greco was
an unlikely explanation for El Greco’s painting style,
but that did not stop the idea from taking root. The
fallacy of the explanation, recognized by the doctor
himself, is that if El Greco saw the world through an
astigmatism, then he would not need to paint scenes
as elongated—the scenes would already appear that
way; adding real elongation would make them appear
even more distorted. (The distortions in El Greco’s
work can easily be explained if the canvas was not
perpendicular to the direction of gaze, as often happens
when working on large canvases.) One might argue
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Figure 7. Analysis of the chromatic and achromatic difference in paintings (blue and orange dots) and photographs (pink squares).

that the memory color effect advances a similar fallacy,
because a perceptual or cognitive distortion that makes
real objects appear in exaggerated saturation would
also make the painted depictions appear exaggerated
in saturation. However, a dismissal of the impact of
perceptual or cognitive factors on art production comes
too quickly.

Consider a situation where an image is viewed
through a defocusing lens that makes the image blurry.
A person viewing an in-focus picture through the
blurry lens will see a blurry picture. Without access
to the information lost by the blur of the lens, the
person will make a reproduction that is different from
the original and likely blurrier. This is a violation of
the El Greco fallacy explanation. Or consider a more
cognitive example, namely, the use of lines by artists.
By the El Greco fallacy account, artists should not
use lines because high-contrast linear elements do not
typically structure natural scenes—if “seeing in lines” is
a kind of lens through which we view the world, then
we should not need to reproduce the world with lines
because the world already “appears” as if it comprises
lines. Of course, the standard account of line use by
artists is that the lines activate the visual system in a
way that matches how the real world does, and using
lines is easier than accurately reproducing the retinal
image: from a cognitive perspective, the lines represent
the object concept, and this concept is what the artist

is depicting. The failure of the El Greco fallacy is
underscored by other observations, too. For example,
it has recently been shown that biased perception of
saturation can differ for each exemplar in a display
showing multiples of the same object (Dubova &
Goldstone, 2022), presumably because perception
depends on an interaction of sensory signals with
cognitive factors, such as attention and memory.

We reasoned that, even when artists are engaged
in veridically representing a scene (whatever veridical
might mean), they are inevitably influenced by the
concepts of the things they are depicting. If true, we
predicted that artists should unwittingly depict the
fruit as more saturated than it is, in the same way that
they tend to overemphasize lines and edges, because
these attributes are, like colors, distinctive features of
object concepts, used by the visual system to encode
and remember objects. The results are consistent with
this interpretation, suggesting that apparent chromatic
contrast reflects processes of perception, cognition,
attention, and memory. The direction of the effect
we observed, in which the warm-colored pixels in the
paintings (a proxy for the fruit) are relatively more
saturated than the backgrounds (as compared with
the photographs) is consistent with work showing that
cognitive factors impact perception of the object to
be matched, not the match (Dubova & Goldstone,
2022). In painting a still life, the object to be matched is
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the real fruit, and the match is the painting of it. The
prediction from the work by Dubova and Goldstone
(2022) is that a piece of real fruit having the same
objective saturation as a depiction of it in a painting
should seem to be more saturated than the painted
version. So, the artists must exaggerate the saturation
in the paintings to create a match, just as we observe.

Although we favor a cognitive-penetration
interpretation, there are alternative possibilities. For
example, the artists may have chosen relatively higher
saturation for the warm colors over the cool colors for
aesthetic reasons, or perhaps because of the impact
of adaptation. The visual system adapts to chromatic
conditions (Webster, 2015), so extended viewing of the
image they are creating may make the colors appear less
saturated. An adaptation account would, on first blush,
predict exaggerated saturation for all colors in a still
life, not just warm colors. However, it is possible that an
explanation invoking an interaction of adaptation and
cognitive factors could generate a disproportionate bias
for warm over cool colors.

Regardless of the explanation, the present work
underscores prior conclusions that perceived saturation
cannot be mapped directly onto a physical attribute, but
is instead the result of an interaction of perceptual and
cognitive factors that reflect mechanisms of perception
along with memory and behavioral demands. For
example, memory colors are not obligatorily observed
for achromatic reproductions of familiar objects.
Achromatic representations of objects (photographs
or digital displays), and the experience of objects
under monochromatic light (which disables retinal
color-encoding mechanisms) (Hasantash, Lafer-Sousa,
Afraz, & Conway, 2019), are not perceived as colored
in their usual colors—the achromatic photograph of
a banana may, by some accounts, appear tinged with
yellow but it does not appear as yellow as a real ripe
banana. There are good reasons to doubt that objects
should always be seen in their typical colors. If they
were, color would be rendered useless as a cue to the
state of an object. The memory color effect, however,
is more subtle and may help to highlight objects
that are important for us, by slightly modulating the
feed-forward chromatic signal by prior knowledge.

Memory colors also seem to differ as a function
of the color of the objects. Witzel et al. (2011) tested
artificial objects such as an image of an orange comic
mouse famous in Germany, a Smurf, and a Coke
can. Memory colors were significant for blue and
yellow objects, weak for orange and brown objects,
and paradoxical for red objects. The relatively stronger
memory color effects for blue and yellow objects may
be explained by the requirement of some uncertainty in
the sensory stimulus, such as the chromaticity of the
lighting (Witzel, Olkkonen, & Gegenfurtner, 2016).
The chromaticity of natural lights varies from blue
to yellow, so there is inherent uncertainty about the

extent to which a blue or yellow chromatic signal
should be applied to the object or the lighting. A
Bayesian framework, constrained by efficient encoding
(Ganguli & Simoncelli, 2014; Wei & Stocker, 2015;
Hasantash et al., 2019), has also been used to explain
the paradoxical memory colors of reddish objects,
including faces (Hasantash et al., 2019). One intriguing
idea is whether the extreme familiarity of the color
of faces establishes a prior about skin color that can
be used to infer the illuminant (Crichton, Pichat,
Mackiewicz, Tian, & Hurlbert, 2012; Lafer-Sousa &
Conway, 2017; Chauhan, Xiao, & Wuerger, 2019).
Taken together, both empirical and theoretical results
lend weight to the idea that memory colors reflect
important processes of conscious visual experience.

The slides of the paintings, although not calibrated,
were taken by art historians to accurately represent
the color in the paintings. Most of the paintings
we analyzed were made during the baroque period
(1593–1728) and later (1821–1943). Future work, with
a larger data set, would allow an assessment of the
validity of the results for specific time periods and
art movements. Because our hypothesis regarding the
exaggerated chromatic contrast of fruit colors versus
non-fruit colors (or warm regions compared with
cool regions) involves implicit processes, we expect
that the effect will be somewhat independent of the
period in which the work is made, just as line drawings
are a potent way of capturing objects regardless
of art period. But obviously artistic freedom has
spawned a multitude of approaches, with some, such as
expressionism, striving sometimes to decouple object
color from optical representation. Future work using
calibrated images would also help test the possibility of
a systematic bias in how colored slides for art historical
purposes are taken. We are alerted to the possibility of
such a bias by the history of film: early film technology
favored the contrast distribution of Caucasian faces
(Dyer, 1997).

Finally, we analyzed chromatic and luminance
differences in both the still life paintings and the
photographs. We were motivated in this analysis to
show how future analysis of art works could provide
insight into mechanisms of perception and cognition,
inspired by work showing that chromatic differences
and luminance differences are correlated in natural
scenes; increases in these differences are associated
with increases in visual discomfort (Penacchio et al.,
2021). Penacchio et al. showed that high chromatic
differences are relatively rare in natural scenes, with a
noted exception being images of fruit. Our analysis,
which focused on fruit, shows that chromatic differences
and luminance differences were only correlated in the
photographs, not the still life paintings: the artwork
shows a large range of luminance differences and a
relatively invariant, and smaller range, of chromatic
differences. This result suggests that artists can decouple

Downloaded from intl.iovs.org on 05/03/2024



Journal of Vision (2024) 24(5):1, 1–15 Hansen & Conway 11

luminance and chromatic differences that are otherwise
bound in natural images, which could imply that
luminance and color are constructed concepts—outputs
of the brain, not inputs to it, as often assumed. The
artistic practice is consistent with the idea that visual
discomfort is triggered more strongly by chromatic
differences than luminance differences, an idea that
warrants further study.

Keywords: painting, art, color, memory, still life
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Appendix

1 aelst_stlbasketmarble1650.tif : Aelst (1650) Baroque
2 aelst_stlfruit.tif : Aelst (1652) Baroque
3 aelst_stlfruit1667.tif : Aelst (1667) Baroque
4 andrieu_stlfruitflow.tif : Andrieu (NaN) Baroque
5 ast_fruitbask1632.tif : Ast (1632) Baroque
6 ast_shellsfruit1937.tif : Ast (1637) Baroque
7 ast_stlfruitflowbask1623.tif : Ast (1623) Baroque
8 baschenis_stlfruit.tif : Baschenis (NaN) Baroque
9 beckmann_pearsorchids1946.tif : Beckmann (1946) Expressionism
10 beert_cherries.tif : Beert (NaN) Baroque
11 beert_stlstrawberries.tif : Beert (NaN) Baroque
12 benton_stlfruitveg1914.tif : Benton (1914) Expressionism
13 bergoijs_banqfruitpew.tif : Bergoijs (NaN) Baroque
14 bonnard_intstlfruit1923.tif : Bonnard (1923) Expressionism
15 bonnard_stlbasket1936.tif : Bonnard (1936) Expressionism
16 bonnard_stlbowl1933.tif : Bonnard (1933) Expressionism
17 bonnard_stleve1926.tif : Bonnard (1926) Post-impressionism
18 bonnard_stlfruit1936.tif : Bonnard (1936) Post-impressionism
19 braque_stlbowlfruit1926.tif : Braque (1926) Expressionism
20 braque_stlbrownpitch1927.tif : Braque (1927) Expressionism
21 braque_stlfruitglassbot1924.tif : Braque (1924) Expressionism
22 braque_stlfruitstringed1938.tif : Braque (1938) Expressionism
23 carvag_baskfruit1596.tif : Caravaggio (1599) Baroque
24 carvag_boywithbask1594.tif : Caravaggio (1593) Baroque
25 cezanne_applessugar1906.tif : Cezanne (1906) Post-impressionism
26 cezanne_cherriespeaches1887.tif : Cezanne (1887) Post-impressionism
27 cezanne_compotier1894.tif : Cezanne (1894) Post-impressionism
28 cezanne_fruitappbread1880.tif : Cezanne (1880) Post-impressionism
29 cezanne_fruitgingbask1890.tif : Cezanne (1890) Post-impressionism
30 cezanne_gingerjar1893.tif : Cezanne (1893) Post-impressionism
31 cezanne_greenmelon1906.tif : Cezanne (1906) Post-impressionism
32 cezanne_jugfruit1894.tif : Cezanne (1894) Post-impressionism
33 cezanne_milkpitcherfru1900.tif : Cezanne (1900) Post-impressionism
34 cezanne_pom1906.tif : Cezanne (1906) Post-impressionism
35 cezanne_potsbottcup1871.tif : Cezanne (1871) Post-impressionism
36 cezanne_stlapples1898.tif : Cezanne (1898) Post-impressionism
37 cezanne_stlappleschair1906.tif : Cezanne (1906) Post-impressionism
38 cezanne_stlbottlespeach1894.tif : Cezanne (1894) Post-impressionism
39 cezanne_stlcommode1888.tif : Cezanne (1888) Post-impressionism
40 cezanne_stlflowfruit1890.tif : Cezanne (1890) Post-impressionism
41 cezanne_stlfruitflow1890.tif : Cezanne (1890) Post-impressionism
42 cezanne_stlfruitwine1879.tif : Cezanne (1879) Post-impressionism
43 cezanne_stlgingerjar1894.tif : Cezanne (1894) Post-impressionism
44 cezanne_stlpeachpear1887.tif : Cezanne (1887) Post-impressionism
45 cezanne_stlpears1893.tif : Cezanne (1893) Post-impressionism
46 cezanne_stlpitchsugar1885.tif : Cezanne (1885) Post-impressionism
47 cezanne_sugarpotbluecup1866.tif : Cezanne (1866) Post-impressionism
48 chardin_buffet1738.tif : Chardin (1728) Baroque

Table 1. List of paintings
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49 claesz_breakfasttable1630.tif : Claesz (1630) Baroque
50 claesz_fruitstillgilded1661.tif : Claesz (1661) Baroque
51 claesz_stlberekemeyer11621.tif : Claesz (1621) Baroque
52 claesz_stlturkey1627.tif : Claesz (1627) Baroque
53 dumont_stldish1912.tif : Dumont (1912) Expressionism
54 duncanson_stlfruit1848.tif : Duncanson (1848) Realism
55 exter_cherries1914.tif : Exter (1914) Cubism
56 fyt_stlfruitfowl1662.tif : Fyt (1662) Baroque
57 gaugin_teapot1896.tif : Gaugin (1896) Expressionism
58 glackens_stlrosesfruit1924.tif : Glackens (1924) Post-impressionism
59 gogh_stlpears1889.tif : Van Gogh (1889) Post-impressionism
60 heem_abundantlife1655.tif : Heem (1655) Baroque
61 heem_champipe1642.tif : Heem (1642) Baroque
62 heem_fruitflowgarland1651.tif : Heem (1651) Baroque
63 heem_garland1653.tif : Heem (1653) Baroque
64 heem_shellfruithague.tif : Heem (NaN) Baroque
65 heem_stl1650.tif : Heem (1650) Baroque
66 heem_stlbirdsnest.tif : Heem (NaN) Baroque
67 heem_stlfruitflow.tif : Heem (NaN) Baroque
68 heem_stlfruitjapanbowl.tif : Heem (NaN) Baroque
69 heem_stlifetotal.tif : Heem (NaN) Baroque
70 heem_stlvinefruit.tif : Heem (NaN) Baroque
71 hunt_stlfruit1943.tif : Hunt (1943) Modern
72 johnson_stlbook1931.tif : Johnson (1931) Expressionism
73 kahlo_fruitoflife1953.tif : Kahlo (1953) Expressionism
74 kahlo_livinglife1951.tif : Kahlo (1951) Expressionism
75 kahlo_stl1952.tif : Kahlo (1952) Expressionism
76 kahlo_stlcereus1938.tif : Kahlo (1938) Expressionism
77 kahlo_stllonglivelife.tif : Kahlo (NaN) Expressionism
78 kahlo_stlparrotflag1951.tif : Kahlo (1951) Expressionism
79 ladell_stlfruitbutter.tif : Ladell (NaN) Baroque
80 ladell_stlfruitivorycask.tif : Ladell (NaN) Baroque
81 ladell_stlfruitledge.tif : Ladell (NaN) Baroque
82 matisse_peaches1940.tif : Matisse (1940) Expressionism
83 mignon_fruitfishnest1670s.tif : Mignon (1670) Baroque
84 mignon_stllife.tif : Mignon (NaN) Baroque
85 moillon_stlbaskasp1630.tif : Moillon (1630) Baroque
86 monet_spanishmelon1880.tif : Monet (1880) Impressionism
87 monet_stlflowerfruit1869.tif : Monet (1869) Impressionism
88 oudry_stlfruitscelery1725.tif : Oudry (1725) Baroque
89 peale_stlbowl1825.tif : Peale (1825) Renaissance
90 peale_stlcake1822.tif : Peale (1822) Renaissance
91 peale_stlfruit1821.tif : Peale (1821) Renaissance
92 pealej_stlfruitbowl1825.tif : Peale (1825) Renaissance
93 pealem_watermelon1828.tif : Peale (1828) Renaissance
94 pealer_stlfruit.tif : Peale (NaN) Renaissance
95 pealer_stlorange.tif : Peale (NaN) Renaissance
96 peploe_stlfruit1918.tif : Peploe (1918) Expressionism
97 ramirez_stlcardoon.tif : Ramirez (NaN) Renaissance
98 ramirezx_stlgrapesmelon.tif : Ramirez (NaN) Renaissance
99 ring_stlfruitoysters1934.tif : Ring (1934) Renaissance
100 roesen_naturesbeauty1855.tif : Roesen (1855) Renaissance

Table 1. Continued
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101 roesen_stillife.tif : Roesen (NaN) Renaissance
102 roesen_stllifePAFA.tif : Roesen (NaN) Renaissance
103 roesen_stlwfruit1850.tif : Roesen (1859) Renaissance
104 ruysch_naturamorta.tif : Ruysch (NaN) Baroque
105 ruysch_stlfruitani1716.tif : Ruysch (1716) Baroque
106 soreau_stlfruit1638.tif : Soreau (1638) Baroque
107 velde_stlbeerdetails1647.tif : Velde (1647) Baroque
108 waldmuller_stlrosefruit1827.tif : Waldmuller (1827) Renaissance

Table 1. Continued
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