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Prior research has demonstrated high levels of color
constancy in real-world scenarios featuring single light
sources, extensive fields of view, and prolonged
adaptation periods. However, exploring the specific cues
humans rely on becomes challenging, if not unfeasible,
with actual objects and lighting conditions. To
circumvent these obstacles, we employed virtual reality
technology to craft immersive, realistic settings that can
be manipulated in real time. We designed forest and
office scenes illuminated by five colors. Participants
selected a test object most resembling a previously
shown achromatic reference. To study color constancy
mechanisms, we modified scenes to neutralize three
contributors: local surround (placing a uniform-colored
leaf under test objects), maximum flux (keeping the
brightest object constant), and spatial mean
(maintaining a neutral average light reflectance),
employing two methods for the latter: changing object
reflectances or introducing new elements. We found
that color constancy was high in conditions with all cues
present, aligning with past research. However, removing
individual cues led to varied impacts on constancy. Local
surrounds significantly reduced performance, especially
under green illumination, showing strong interaction
between greenish light and rose-colored contexts. In
contrast, the maximum flux mechanism barely affected
performance, challenging assumptions used in white
balancing algorithms. The spatial mean experiment
showed disparate effects: Adding objects slightly
impacted performance, while changing reflectances
nearly eliminated constancy, suggesting human color

constancy relies more on scene interpretation than
pixel-based calculations.

Introduction

Our ability to perceive colors plays a significant role
in our daily lives. Color allows us to perceive things
quicker and to remember them better (Gegenfurtner
& Rieger, 2000; Wichmann, Sharpe, & Gegenfurtner,
2002). Our visual system processes the visible spectrum
and interprets the colors of objects based on how they
reflect or emit light. Interestingly, we can still identify
the same object under different lighting conditions.
For example, whether we are in a room with an office
lamp or outside during sunset, the pages of a book
will appear white. This phenomenon is known as color
constancy. It is our ability to perceive the invariant
reflectance properties of an object, despite changes
in the illuminant color (Helmholtz, 1867; Helmholtz,
1910; Hering, 1920; von Kries, 1923; Judd, 1940). Many
of the early studies disagreed on how color constancy
was achieved, but there was a consensus that constancy
was rather high, at least when the field of view was large
and the scene structured (Katz, 1911).

Starting with the experiments of Arend and Reeves
(1986), color constancy was investigated in a more
quantitative manner, trying to obtain a single number
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(the color constancy index) that would specify exactly
to what degree human observers are color constant:
A value of 0 indicates a lack of color constancy,
while a value of 1 or 100% indicates perfect color
constancy performance. Arend and Reeves pioneered
this quantitative approach and initially observed
relatively low constancy. Their estimate was as low as
20% under some of their specific settings. However,
with the introduction of a variety of different methods
over the years, estimates of the constancy index have
steadily increased, reaching levels of 80% and beyond
(for reviews, see Foster, 2011; Witzel & Gegenfurtner,
2018). The picture that emerges is that constancy can be
quite high when the scene is naturally structured and lit
by a single illuminant (Kraft & Brainard, 1999; Hansen,
Walter, & Gegenfurtner, 2007; Olkkonen, Witzel,
Hansen, & Gegenfurtner, 2010; Radonjić, Cottaris, &
Brainard, 2015; Radonjić et al., 2018; Hurlbert, Gupta,
Gross, & Pastilha, 2019; Gegenfurtner, Weiss, & Bloj,
2024). In many of these experiments, real, physical
setups were used, rather than simulations of scenes
on computer displays. While this made it possible to
show that constancy can be high, it is cumbersome
at best and impossible at worst to manipulate the
scene experimentally. Recent advances in virtual reality
(VR) technology together with three-dimensional
(3D) rendering engines have facilitated immersive
experiences in different research fields (Cipresso,
Wilson, & Soranzo, 2015; Yaremych & Persky, 2019;
Shapiro & LoPrete, 2020; Wiesing, Fink, & Weidner,
2020). Here, we use VR to allow for nearly natural
conditions, while at the same time maintaining full
experimental control. We use a color selection task to
study the contribution of three basic mechanisms to
color constancy—local contrast, bright is white, and
global mean color.

The choice of method is important for these
experiments, and numerous methods have been used
for measuring color constancy, including achromatic
adjustment (Kraft & Brainard, 1999; Hurlbert
et al., 2019), color selection (Radonjić et al., 2015;
Gegenfurtner et al., 2024), color categories (Olkkonen
et al., 2010), and illumination discrimination (Pearce,
Crichton, Mackiewicz, Finlayson, & Hurlbert, 2014;
Radonjić et al., 2018). In achromatic adjustment, the
color of the target object is changed until it appears gray
to the observer or is adjusted until it matches a reference
one. In a color selection task, participants choose the
color-constant object from a group of competitors. In
a color categories task, a color patch is selected from a
given chart system, such as from Munsell color chips.
Unlike the previous tasks, illumination discrimination
involves identifying the color of the light source instead
of the objects and is an indirect measure of color
constancy. Observers focus on the illuminant to make
this determination. For our experiment, we opted
for a color selection task because in a virtual reality
environment, it encourages participants to look around

the scene for objects that are already integrated into the
environment.

In terms of how color constancy is achieved,
researchers have identified and studied three primary
mechanisms: (a) local surround, which states that
color changes across local edges (for example,
between object and background) are relatively stable
across illuminant changes (Wallach, 1948; Valberg
& Lange-Malecki, 1990; Foster & Nascimento,
1994; Nascimento & Foster, 2000); (b) maximum
flux, or “bright is white,” in which we adapt to the
brightest area of a scene (Land & McCann, 1971;
Land, 1986; Cataliotti & Gilchrist, 1995; Gilchrist
et al., 1999); and (c) spatial mean, or “gray world,”
which refers to adaptation to the average color of
a scene (Buchsbaum, 1980; Brainard & Wandell,
1986). Here, we examine these three classical color
constancy mechanisms in an immersive environment
considering five illuminations: three on the daylight
locus (neutral, blue, yellow) and two in the orthogonal
direction (red, green). To silence the local surround
mechanism, we place the target object on a leaf
that has a constant pink-rose chromaticity under all
illumination conditions. To silence the maximum flux
mechanism, we place a bright object in the scene
that has constant neutral chromaticity under all
illuminations. It is more difficult to keep the spatial
mean chromaticity constant under illumination
changes. To silence this mechanism, we define two
different approaches: (a) adding new objects into the
scenes and (b) modifying the reflectances of the current
objects.

These three mechanisms were investigated earlier
by Kraft and Brainard (1999) in a setup with real
objects, and they measured the contribution of various
combinations of the cues to color constancy. Their
study was seminal in showing that constancy crucially
depends on the quality of visual information that
is available. However, it was not possible for them
to separately and independently silence the three
cues under arbitrary illumination changes. Here, we
create two scenes, one indoor and one outdoor, and
conduct a color selection experiment for the three
mechanisms together with a baseline experiment, where
all cues are present. Observers choose among five
competitor objects to match the color of the target
object (achromatic), shown at the beginning of the
experiment under neutral illumination. The scenes are
modeled in Autodesk 3ds Max, rendered using the
real-time gaming engine of Unreal Engine (v4.27.1),
and finally visualized in the head-mounted display HTC
Vive Pro Eye.

Our study reveals that color constancy performance
was high in the “all cues present” baseline condition,
consistent with previous studies on color constancy in
complex real-world scenes (Kraft & Brainard, 1999;
Gegenfurtner et al., 2024). However, selectively silencing
each classic cue had differing effects on constancy.
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On the one hand, performance significantly dropped
for all colored illuminations when local surround was
eliminated as a cue. This was particularly so under the
green illuminant, indicating significant interactions
between the greenish illumination and the rose-colored
local context, two colors on opponent poles of
color space. On the other hand, the maximum flux
mechanism had minimal impact on performance, and
the performance drop was not statistically significant.
This was surprising because many computational
algorithms for white balancing use the brightest (or
white) patch in the scene (Land & McCann, 1971;
Land, 1986). The most intriguing finding was from the
spatial mean experiment, where the two approaches
we took had vastly different results. While adding new
objects to balance the average color in the scene had a
small impact on performance, changing reflectances of
existing objects almost completely abolished constancy.
This indicates that human color constancy is not
achieved using pixel-based computations but relies on
scene segmentation and interpretation. Our results
encourage an elaboration of the classic color constancy
cues for real-world scenes.

Method

In this section, we present the setup and the
experiments we conducted to measure color constancy
performance.

Stimuli

VR environment
We modeled two scenes using Autodesk 3ds Max

with the goal of creating two realistic and natural
settings: an indoor office-home environment and an
outdoor forest scene rendered using the gaming engine
Unreal Engine (v4.27.1). Figure 1 shows the two scenes
from one angle. The indoor scene contains a desk,
an office chair, a lounge chair, a door, a bookshelf,
paintings, and curtains. There are several small objects
placed around the scene, including plants and books,
which have a variety of material properties and
reflectances, including specularities. We used a single
point light source placed just above the observers’ VR
actor in gameplay (center of the room above office
chair), such that even if they looked up, they would not
see the light source.

The outdoor scene spans a larger area in VR space,
containing trees, a large cliff, a lake, rocks, moss, grasses,
and flowers. There were minor ripples across the lake
water; otherwise, all other objects were static. The light
sources were a directional light, pointed toward the
large cliff, along with a skylight set to the same color as

Indoor

Outdoor

Figure 1. The two 3D rendered environments in Unreal Engine:
indoor and outdoor, both under neutral illumination.

the directional light. We additionally changed the color
of the sky by multiplying its default material colors
(bluish with white clouds) by the illuminant color,
such that the sky color (that is, its reflected light) was
influenced by the color of the illuminant. The water
in the lake was translucent and its color was shifted
toward that of the illuminant. It reflected the sky as well
as other surroundings (e.g., trees) at its surface.

To render the scenes, we make use of the two-step
Photon Mapping (Jensen, 2001) algorithm available in
Unreal Engine (Lightmass). The first step, computed
offline, performs a lighting simulation by tracing packets
of photons emitted by a light source, with each photon
carrying a fraction of the power of the light. As photons
scatter within the scene and hit nonspecular surfaces
and are either scattered or partially absorbed, their
energy, locations, and directions are stored in photon
maps (surface lightmaps), thus enabling subsequent
computation of reflected radiance at any point in
the scene. As dense lighting samples are collected
throughout the volume of the scene (Volumetric
Lightmaps), lighting data can be interpolated and
used to light dynamic objects. Mirror reflections are
computed in the second step, which make use of Monte
Carlo ray tracing to render the final images. Since most
of the illumination information is computed offline
during the first step, the computational cost of the
rendering step is significantly lower than pure Monte
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neutral selection zero-constant perfect-constant

Figure 2. Indoor scene under neutral (left) and green illuminants (middle and right). The lizard on the left corresponds to the
perfect/zero-constant lizard under the neutral illuminant. The five lizards on the right correspond to the five color competitors under
the green illuminant: zero-constant match, two samples, perfect-constant match, and over-constant match.

Carlo ray-tracing approaches, albeit at the cost of
higher storage requirements. Overall, photon mapping
tends to produce low-frequency noise, rather than
the high-frequency artifacts introduced by variance
in Monte Carlo ray tracing. A potential downside of
photon mapping is the bias introduced in rendered
images, due to the kernel used in photon density
estimation from stored data (Schregle, 2003). However,
since the technique is consistent (Jensen, 2001), we
reduced the bias by increasing the number of photons
traced offline during the first step.

Illuminants
We rendered each scene under each of five

illuminants. We used the same illuminants as Aston,
Radonjić, Brainard, and Hurlbert (2019), with three
along the daylight axis (neutral, blue, yellow) and two
orthogonal (red, green). The CIE xy chromaticites are
listed here: neutral (.31, .33), blue (.25, .26), yellow (.39,
.39), red (.32, .26), and green (.30, .38). When working
with the engine, we need to specify the RGB values
for the light and its intensity. For conversion to RGB,
we set the luminance (Y value) equal to 30 cd/m2 and
used the precomputed calibration from Gil Rodríguez
et al. (2022). Additionally, in Unreal Engine, one
can specify the intensity of the light sources. In the
indoor scene, we set the intensity to 16.58 cd. In the
outdoor scene, the directional light source was set
to 15 lux.

Color competitors: Lizards
We used a lizard-shaped mesh for our test stimuli

(see Figure 2). In the beginning of each VR session,
observers were presented with the reference stimulus, an
achromatic lizard, which was placed in the scene under
the neutral illuminant. The reflectance of the lizard
was set to RGB = [0.146, 0.145, 0.147], which resulted
in a reflected light of chromaticity values (x, y) =
(0.31, 0.33) under the neutral illuminant. In the indoor
scene, this lizard sat on the brown desk in front of the
observer, and in the outdoor scene, it sat on the moss in
front of the cliff (see Figure 4 under “Lonely Lizard”).

During the experimental trials, five lizards were placed
in the scene, each one a different color competitor.
Color competitors were chosen based on the illuminant
in the scene (red, green, blue, yellow, or neutral). RGB
reflectances and reflected light were calculated using the
following formula:

ReflectedRGB = ReflectanceRGB × IlluminantRGB. (1)

“Reflectance” is defined as the proportion of light of
each channel that an object reflects and is a property
of an object regardless of illumination. “Reflected
light” is defined as the light that is reflected from an
object and is a combination of the reflectance and the
illumination. We computed the five competitors for the
colored illuminations as follows. Figure 2 shows the
color competitors under the green illuminant:

(1) The perfect-constant match (or reflectance match)
had the same reflectance RGB as the reference
lizard.

(2) The zero-constant match (or tristimulus match)
reflected the same light under all illuminants as the
reference lizard under the neutral illuminant.

(3) The reflectances of two other competitors were
evenly spaced between the zero-constant and
perfect-constant matches in CIELAB color space.

(4) The over-constant match was placed beyond the
perfect-constant match at a distance 25% of that
between the perfect- and zero-constant matches.

For the neutral illuminant, the reference lizard color
served as both the perfect-constant and zero-constant
match. We added two competitors in the blue direction,
one with the same reflectance as the zero-constant
match in the yellow illuminant and another halfway
between in CIELAB, and two competitors in the yellow
direction, computed in the same way.

Due to the large range of depths in the outdoor
scene, lizard mesh sizes (in VR world units) were
adjusted depending on their location in the scene,
such that their degrees of visual angle varied between
∼8° and 21°. The indoor scene had very little depth
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variation, so lizards in all locations were the same size
in VR world units (∼18°).

Color calibration
Color vision research in VR requires precise

calibration of display devices (Barnard, Cardei, &
Funt, 2002). Several studies have focused on calibrating
different headsets using various software, such as the
HTC Vive Pro Eye and Pimax 5k+ with Unreal Engine
(Clausen, Fischer, Furhmann, & Marroquim, 2019;
Toscani et al., 2019; Zaman, Sarker, & Tavakkoli, 2023).
Recent work also compares calibrations using different
rendering software and shaders (Murray, Patel, &
Wiedenmann, 2022; Díaz–Barrancas, Gil Rodríguez,
Aizenman, Bayer, & Gegenfurtner, 2023). VR
techniques have been shown to be suitable in principle
for studying color constancy (Díaz-Barrancas, Cwierz,
Gil Rodríguez, & Pardo, 2022; Gil Rodríguez et al.,
2022). Here we use VR to study specific cues for color
constancy in indoor and outdoor environments.

The colors of the illuminants and lizards were
calibrated according to the procedure described by
Gil Rodríguez et al. (2022). The head-mounted display
(HMD) used was an HTC Vive Pro Eye, which has two
AMOLED displays each with a resolution of 1,440 ×
1,600 pixels with 24-bit resolution, a maximum field of
view of 110°, and a refresh rate of 90 Hz.

Briefly, we measured the primaries of the HMD
using a Konica Minolta CS-2000A spectroradiometer.
Using Unreal Engine, we rendered a simple scene: a
room with black-and-white matte checkerboard walls
(R, G, B = 0 and R, G, B = 1), a point light source
(R, G, B = 1), and a matte uniform surface placed
under the light. The center of the HMD pointed to
the surface, and we measured the light emitting from
the center of the HMD while varying the R, G, and B
channels of the surface’s reflectance. All postprocessing
and tonemapping used by the engine were disabled,
which left us with a linear relationship between
channel bit value and luminance, with luminances
saturating after a certain value (Toscani et al., 2019;
Gil Rodríguez et al., 2022). The dynamic range
measured under this calibration setup was 1:20,000.
This calibration was validated by setting the surface’s
reflectance RGB to 100 different colors spanning the
RGB gamut and measuring the emitted light (please
refer to Díaz-Barrancas et al., 2023 for more details).
Figure 3 shows the difference in CIEDE2000 (�E00)
units between the nominal and measured values of
these 100 colors; note that the �E00 never exceeds 2,
which is below the minimal just-noticeable-difference
threshold for �E00 units (Sharma, Wu, & Dalal, 2005).
During gameplay of our experiment, all postprocessing
was disabled to ensure accurate color calibration
(Gil Rodríguez et al., 2022).

Figure 3. Color validation of the headset calibration: �E00
values between nominal colors and measured colors. See text
for details.

Observers

Ten naive observers completed the experiment in
the indoor scene, and 10 separate naive observers
completed the experiment in the outdoor scene. All
observers gave informed consent and had normal color
vision as assessed by the Ishihara Color Vision Test.
All observers were recruited from the university and
understood and spoke English fluently.

Procedure

Observers wore the HMD and were holding one HTC
Vive controller while seated in a rolling chair for the
duration of the experiment. At the beginning of each
VR session, once they were comfortable in the headset,
they completed a 5-point eye-tracking calibration built
into the SteamVR platform used to control the headset
(ViveDevelopers). For the calibration, we first adjust the
headset position and the interpupillary distance, and
then observers follow a dot on the screen, which moves
to five different locations, with their eyes. We receive
feedback from SteamVR on whether the calibration
is successful. If it is, the observer proceeds with the
experiment; otherwise, they repeat the calibration
(Imaoka, Flury, & de Bruin, 2020). Analysis of this eye
movement data is not presented in this publication.

Figure 4 depicts the timeline of the experiment
within the VR environment. Observers first sat in a
room with multicolored walls on which instructions in
English were written. Observers stayed in this room for
a minimum of 30 seconds before the words “PRESS
the TRIGGER” appeared, allowing them to move on
to the experiment. Once they pressed the trigger on
the VR controller, their VR actor was transported to
one of the scenes (indoor or outdoor, depending on
the observer group) cast under the neutral illuminant.
The achromatic reference lizard lay in the scene and
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Figure 4. Timeline of a single VR session. Observers first sat in the Instructions room for at least 30 seconds. After pressing the trigger,
they moved on to the presentation of the “Lonely Lizard,” an achromatic lizard sitting in the scene under the neutral illuminant. Then
they were transported to the scene presented under one of the five illuminants to begin the adaptation period. During this time, no
lizards were present in the scene. The adaptation period lasted 60 seconds and then the trials began. Five lizards were scattered
around the scene, and observers chose the one that appeared most in color like the “Lonely Lizard.” After each lizard selection, the
observer gave a satisfaction rating. Then the next trial began. At the end of the 15-trial illuminant block, the observer was transported
back to the Instructions room to begin the next illuminant block. Illuminant block order was randomized for each session.

lizard 1

lizard 2

lizard 3

lizard 4

lizard 5

lizard 6
lizard 7

lizard 8

lizard 9

lizard 10

Figure 5. Ten lizard locations in the indoor scene. Five are located in front of the chair and five more behind. The colors of the lizards
are only for illustration purposes.

the text “Lonely Lizard” appeared floating for a few
seconds in the scene before disappearing. After 30
seconds, the Lonely Lizard disappeared. The illuminant
abruptly switched to one of the five illuminant colors
(blue, green, neutral, yellow, or red), beginning the
adaptation period for that illuminant. The text “Look
around” appeared in white for a few seconds. Observers
were encouraged to rotate in their chair and view the
entire scene. After 60 seconds of adaptation, the trials
began. Five lizard competitors, each with a different
reflectance, appeared around the scene. Observers were
told to find all five lizards and then select the one that
appeared most like the “Lonely Lizard” they saw at the
beginning of the session. They were free to rotate and
move in their chair. In order to explore the scene, they
had to rotate to change their viewpoint; however, no
translation was required to see the relevant areas of the
scene. They made their selection by pointing the VR
controller, which constantly emitted a turquoise “laser,”
at the chosen lizard and pressing the trigger. Afterward,
a widget appeared on the screen and they were asked

to indicate how satisfied they were with their choice
on a Likert scale, again using the controller: strongly
dissatisfied, dissatisfied, neutral, satisfied, strongly
satisfied. The next trial began immediately afterward.
Under a single illuminant, observers completed 15 trials
before moving on to the next illuminant block. Within
a session, trials were blocked by illuminant, with the
order randomized, and all five illuminants were tested.
In between illuminant blocks, the observers’ VR actor
moved back to the instructions room for 30 seconds.
One VR session lasted about 45 minutes.

On every trial, the five lizards appeared in five
locations randomly selected from a total of 10 (indoor)
or 9 (outdoor) possible locations in the scene. In the
indoor scene, these locations spanned the entire room
except the ceiling (Figure 5). In the outdoor scene,
the locations spanned most of the scene but excluded
distant locations (Figure 6). All lizards were perched
on an object (i.e., none were hanging in the air).
Additionally, at the beginning of every trial, the view
of the VR actor was oriented to a random direction,
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lizard 1

lizard 2

lizard 3

lizard 4

lizard 5 lizard 6

lizard 7

lizard 8

lizard 9

Figure 6. Nine lizard locations in the outdoor scene. Six are located on the land, cliff, and tree, and three are around and on top of the
water. The colors of the lizards are only for illustration purposes.

in order to oblige the observers to view different parts
of the scene. In the indoor scene, the VR actor always
hovered over the office chair, but the rotation of the
viewpoint could change to one of three angles on every
trial. In the outdoor scene, we used three possible VR
actor positions and viewpoint rotations.

Cue silencing

Our aim in this experiment was to examine the role
three classic constancy cues play on color constancy
indices. To do this, we selectively silenced a different
constancy cue while keeping all other cues present. As
a baseline, we also measured color constancy indices
when all cues were present. Sessions were blocked
by cue (Baseline [all cues present], Local Surround,
Maximum Flux, Spatial Mean: Adding Objects, and
Spatial Mean: Changing Reflectances), and observers
completed two sessions of each cue, for a total of 30
repetitions per condition. Cue silencing did not affect
presentation of the reference lizard, which was always
done under a neutral illuminant with all cues present.
Sessions were randomized with one caveat: The two
Spatial Mean cues were added to the experiment later
and thus were completed last. Below we explain the
changes we made to the scenes in order to silence each
cue. All other aspects remained the same.

Local surround
To silence the local surround cue, we chose to place

the lizards on a natural object slightly larger than the
size of the lizard. We used a taro leaf in the indoor
scene and a castor leaf in the outdoor scene. We set the
leaf material’s shading model to “Unlit” and defined
the emissive color of the leaf as RGB = [0.425, 0.183,
0.187], a pinkish rose-like color. This means that the leaf
color is self-illuminating (but is not a light source) and is
not affected by the illuminant, so across all illuminants,
it reflects the same light. To choose the leaf color, we
wanted to avoid a color close to the illuminants or the

competitors. The rose color lies between the reddish
and yellowish illuminants in CIELAB space at equal
chroma (where R, G, B = 1 is defined as a*, b* = 0, 0).
Figure 7 illustrates this manipulation in the outdoor
scene under each illumination.

Maximum flux
The maximum flux cue presupposes that the brightest

reflected light in the scene is recomputed by the observer
as white. To silence this cue, we set an object in the
scene to always reflect the brightest light and to be
unaffected by the illuminant. In the outdoor scene,
we placed a matte uniform square sheet (23°) on the
cliff that conformed to the cliff’s shape (modeled in
Autodesk 3ds Max). The RGB reflectance of the sheet
under each illuminant was chosen such that the RGB
reflected light was 1 (see Equation 1). Figure 8 shows
an illustration demonstrating how this mechanism was
silenced. In the indoor scene, we used two lampshades
(9–10°) as the maximum flux cue (on opposite sides
of the room). Since the lampshades had a cloth fabric
texture, we set its reflected light color in a similar way
as for the leaves for the local surround cue: We defined
the material as “Unlit” and set the default base color
instead as the emissive color.

Spatial mean: Adding objects or changing reflectances
The spatial mean cue presupposes that an observer

will take the spatial average color of the scene and
normalize it to gray. In order to silence this cue, we
needed to equate the average color of the scenes across
illuminants; this is tricky because an illuminant globally
shifts the average color of the scene toward the color of
the illuminant. To silence this cue, we needed to shift the
spatial mean under each chromatic illuminant to that
under the neutral illuminant. We took two approaches:

(1) Adding new objects to the scene
(2) Changing the reflectances of objects present in the

scene
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Figure 7. Illustration of the local surround cue manipulation in the outdoor scene. The scene under the neutral illuminant is in the
center. Clockwise starting from the top left are the following colored illuminants: blue, green, yellow, red. Each lizard (not shown) is
placed on a rose-colored leaf reflecting the same light under all illuminants (see text for details). A thick line matching the color of the
leaves connects one leaf across all illuminant images to show that they reflect the same light.

In the first approach, we added new objects
(“moon-like” spheres in the outdoor scene and picture
frames and foliage in the indoor scene; see Figure 9)
whose reflectances lay opposite the illuminant color
away from the neutral point in xy chromaticity space.
For example, under the blue illuminant, the new object
reflectances were yellowish and, under the yellow
illuminant, bluish. In the indoor scene, the frames
had a default texture and material. The frame itself
was semi-glossy (with a specularity of 0.5) and the
picture inside of the frame was matte and uniform.
Both frame and picture were shifted in color toward the
opposite of the illuminant color. For the foliage (ivy
plant), we shifted the tint of the albedo also toward the
opposite of the illuminant color. In the outdoor scene,
the spheres had a concrete, “moon-like,” gray default
material, so we also shifted the tint of its albedo toward
the opposite of the illuminant color.

In the second approach, we shifted the reflectances
of almost all objects toward the color opposite the
illuminant in the same manner as the previous approach
(see Figure 10). We applied this shift to almost all colors
in the scenes, except for objects smaller than the office
chair in the indoor scene and for the flowers and small
grasses in the outdoor scene.

We measured the average scene color by taking
images of each scene under one illuminant and

averaging. We used a Radiant Vision Systems I29
colorimeter calibrated to the HMD’s primaries
(ProMetric Software, Radiant Vision Systems, 2023)
and fitted with an AR/VR lens specifically designed
for use with HMDs. We rotated the camera viewpoint
in the VR scene around the z-axis to eight angles
(45° apart) for the indoor scene and four angles (45°
apart) for the outdoor scene and took pictures. The
colorimeter has a resolution of 6,576 × 4,384 and
gives us CIExyY values at each pixel; we averaged
together the XYZ values across all the images. We
provide a sample image acquired by the colorimeter I29
(indoor baseline under yellow illuminant, luminance
only shown) on the left side of Figure A.1 in the
Appendix. For both approaches, we continuously
measured and remeasured the spatial mean color
using the colorimeter while adjusting the colors until
the values under the colored illuminants roughly
equated the spatial mean under the neutral. Figure A.1
shows this by plotting the spatial mean color of
the indoor (upper) and outdoor (lower) scenes in
CIExy chromaticities under each of the illuminants
with “all cues present” (Baseline) as color-coded
squares. The circles and triangles correspond to Spatial
Mean: Adding Objects and Spatial Mean: Changing
Reflectances, respectively, for both indoor and outdoor
scenes.
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Figure 8. Illustration of the maximum flux cue manipulation in the outdoor scene. Layout of the upper part of the figure is the same as
Figure 7. A thick line matching the color of the white sheet connects the cue across illuminant images to demonstrate that they reflect
the same light. In the lower part of the figure, we contrast the top images by depicting how the sheet would look if we did not control
its reflected light in such a way.

Analysis

One observer from the indoor scene and two from
the outdoor scene did not complete the Spatial Mean:
Changing Reflectances condition, and two observers
from the indoor scene and one from the outdoor
did not complete the Spatial Mean: Adding Objects
condition. Before any analysis, we removed all trials
where observers marked their satisfaction as “strongly
dissatisfied” or “dissatisfied.” We discarded 16.5% of
trials from the indoor scene and 4.1% of trials from the
outdoor scene due to low satisfaction ratings.

Since participants could only choose discrete
competitors for their lizard match, we chose to use
an adaptation of maximum likelihood difference
scaling (MLDS) (Maloney & Yang, 2003; Knoblauch
& Maloney, 2012), implemented by Radonjić et al.
(2015) and Radonjić, Cottaris, and Brainard (2015), to

determine their exact match. This method supposes that
the five competitors are not laid out in each observer’s
perceptual space as they are in CIELAB color space and
finds an arrangement that maximizes the likelihood of
an observer’s choice matrix. Briefly, we created a matrix
of paired comparisons for each condition consisting
of all possible pairs of the five competitors (10 unique
pairs), where in each cell, we computed the proportion
of times the participant chose one in the pair over the
other.

Figure 11 shows an example paired comparison
matrix of Observer 4 in the Maximum Flux condition
under the red illuminant in the indoor scene. For the
analysis, we used the same restrictions as Radonjić et al.
(2015). The position of the zero-constant match was
set to 0, and the standard deviation of the Gaussian
noise applied to the perceptual position of every
competitor was set to 0.1. The order of the competitors
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Figure 9. Illustration of the spatial mean cue manipulation by adding new objects to the scene, for the indoor (top) and outdoor
(bottom) scenes. Layout of each scene in the figure is the same as in Figure 7. As described in the text, new objects were added to the
scene, which balanced the spatial mean color to be neutral.
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Figure 10. Illustration of the spatial mean cue manipulation by changing the reflectances of objects already present in the scene for
the indoor and outdoor scenes. Layout of the figure is the same as Figure 9. As described in the text, we changed the reflectances of
almost all objects in the scene in order to balance the spatial mean color to be neutral.
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Figure 11. Choice matrix (top) of one sample observer (#4 during the Maximum Flux cue condition under the red illuminant in the
indoor scene). Rows represent the chosen competitor—T: tristimulus or zero-constant, R: reflectance or perfect-constant, C1,C2: two
competitors between T and R, and OC: over-constant. Each cell notes the proportion of times that competitor was chosen over one
other competitor and is color-coded from white (none of the time) to blue (every time). The matrix is symmetrical. Once we find the
best competitor and match positions using the modified MLDS algorithm (bottom left), we recover the position of the observer’s
match in CIELAB space via interpolation (bottom right). See text for more details. Note that competitor colors are defined in the
reflectance domain.

was preserved with a minimum distance of 0.025
between competitors. We then iteratively searched for
the best-fitting arrangement.

Across all observers and conditions, the R2 value
between the observed proportions and predicted
probabilities following the MLDS analysis had an
average of 0.99 (95.7% of all R2s were above 0.95, after
discarding two very poor fits with R2 values below
0.1, both from the outdoor scene), indicating that the
algorithm well predicted observers’ choices.

Once the location of the observer’s match is found
in their perceptual space (Figure 11, bottom left), the
match can be transformed into CIELAB by preserving
the same proportions as in the perceptual space
(Figure 11, bottom right). From now on, please note
that we defined all the competitors and the estimated
matches in the same space by computing their “reflected
light” in CIELAB using the white of the monitor as
the white point. While the white point of an opponent
color space such as CIELAB is typically corrected to
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be the color of the illuminant, here we wanted to use
the same physical space across all illuminants such that
the position of the perfect-constant match would be
constant in order to remove any assumption that the
observers fully adapted to each illuminant.

Computing the color constancy index (CCI) for
the colored illuminants is relatively straightforward:
Matches at the zero-constant match had a CCI of 0%,
matches at the perfect-constant match had a CCI of
100%, and matches at the over-constant match had a
CCI of 125%. For all other matches, CCIs were scaled
accordingly in CIELAB. However, it is possible that
there are differences between each observer’s memory
of the color of the reference lizard throughout the
session and the actual reference lizard color, presented
to them at the beginning of the session. So for each
observer, we recalculated the position in CIELAB of a
100% and 0% CCI based on their average match across
all conditions under the neutral illuminant. The 0% CCI
point is defined as the reflected light from the match
under the neutral illuminant. Then, from Equation 1,
we can compute its reflectance as

ReflectanceRGB = ReflectedRGB/IlluminantRGB. (2)

The 100% CCI point is calculated from this
“Reflectance” value using Equation 2 and applying
again Equation 1, so we can get the “Reflected” value
under each illuminant. Observer CCIs were then
calculated from these new points.

For all statistical analyses, we fitted linear mixed-
effects models (LMMs) using the nlme package
(Pinheiro, Bates, & R Core Team, 2023) in the R
programming environment (R Core Team, 2023).
All LMMs were fitted using the restricted maximum
likelihood method. We ran analyses of variance
(ANOVAs) using the built-in R package stats. All post
hoc contrasts were performed using the emmeans
package (Lenth, 2023).

Results

Baseline condition: All cues present

Figure 12 plots the color constancy indices of each
participant for the baseline condition, in which all
cues are present. In line with our earlier experiment
(Gil Rodríguez et al., 2022), the degree of constancy
under these conditions was very high. We fitted a linear
mixed-effects model with illuminant as a fixed-effects
factor and observer as a random-effects factor and
performed a one-way ANOVA. We found no difference
between CCIs of illuminants in the indoor scene, with
a mean of 96.7% and a standard deviation of 18.9%

Figure 12. Color constancy indices under the colored
illuminants in the baseline condition (all cues present) for both
scenes. Each dot represents a participant. Note that there were
different sets of participants for each scene. The mean across
participants for a given illuminant is marked with a red line. The
illuminants are color-coded. The darker region denotes ±1.96
standard errors of the mean and the lighter region denotes ±1
standard deviation from the mean. The dotted line represents
perfect color constancy (100%).

across illuminants (F(3, 27) = 0.38, p = 0.77). However,
in the outdoor scene, CCIs for the green illuminant,
105.0% on average, were significantly different from
the blue and the red, which had average CCIs of
74.4% and 80.4% (F(3, 26) = 5.07, p = 0.007; with
Tukey-honestly significant difference (HSD) corrections
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Table 1. Analysis results of linear mixed-models fit to data (indoor and outdoor scenes separately). The first model was fitted with cue
as a factor, observer as a random-effects variable, and a forced intercept of 0. The upper part displays the CCI difference estimate
(departure from 0, i.e., baseline), t-stat for each silenced cue, and rounded p-values. The degrees of freedom was 135 for the indoor
scene and 132 for the outdoor. The middle part shows the results of contrasts comparing illuminants within each silenced cue (after
fitting the same LMM but with the interaction of cue and illuminant instead as factors). The lower part shows the results of contrasts
comparing daylight and off-daylight illuminants within each cue. Estimates are estimated marginal mean differences from the mean
CCI of the silenced cue. Degrees of freedom were 120 for all t-tests on contrasts. Tests with statistical significance (p < 0.05) are
highlighted in green. See text for more details.

(Tukey, 1949), blue vs. green: t(26) = −3.62, p = 0.007;
red vs. green: t(26) = −2.9, p = 0.04; yellow vs. green:
t(26) = −2.71, p = 0.05). The high constancy under
green illumination may be due to the overall green shift
in this landscape scene, which might shift as well the
perceived neutral.

Additionally, we wanted to compare illuminants
along the daylight axis (blue and yellow) with those
off the axis (red and green). We fit another linear
mixed-effects model with daylight as a fixed-effects
factor and observer as a random-effects factor and
performed a one-way ANOVA. We did not find a
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significant difference between illuminants on and off
the daylight axis for the indoor scene (F(1, 29) = 0.80,
p = 0.38), but we did for the outdoor—off-daylight
illuminants resulted in higher CCIs than daylight
illuminants (average CCIs of 92.7% and 77.3%,
respectively; F(1, 28) = 4.96, p = 0.03).

Lastly, we combined both the indoor and outdoor
data into another linear mixed-effects model with scene
as a factor and observer again as a random-effects
variable and performed a one-way ANOVA. We found
no significant effect of scene (F(1, 18) = 2.97, p =
0.10), but there was a trend in the direction of better
constancy in the indoor scene (96.7% vs. 85.2%).

For each scene, we fitted a linear mixed-effects
model to the difference in color constancy indices
between the baseline condition and each cue-silencing
condition per observer using cue as a factor, observer
as a random-effects variable, and a forced intercept of
0 (because we wanted to investigate departures from
the baseline condition). We performed post hoc testing
by fitting another linear model with cue and illuminant
as factors and again with observer as a random-effects
variable and a forced intercept of 0. We computed the
estimated marginal means and applied contrasts with
the method “eff,” grouping by cue. Table 1 compiles the
results of all tests on the models.

Effect of local surround

Figure 13 shows the effect of silencing the local
surround cue for both the indoor and the outdoor
environment. For the indoor scene, we found
significantly reduced color constancy compared to
baseline, with an average drop of 22.6%, from 96.7%
to 74.1% (t(135) = −4.89, p < 0.001). In the outdoor
scene, we also found significantly reduced constancy
(average drop: 14.9%, from 84.7% to 69.8%; t(132) =
−4.14, p < 0.001). A closer look at the contributions
of each illuminant resulted in no significant difference
between illuminants in the indoor scene, but in the
outdoor scene, we did find that the green illuminant had
a significantly greater effect than the other illuminants
(average percentage drop for green: 38.1%; average
percentage drop for red, blue, and yellow: 6.58%; t(120)
= −4.32, p < 0.001, with Dunn–Šidák corrections;
Šidák, 1967).

Effect of maximum flux (brightest region in
image)

Figure 14 shows the effect of silencing the brightest
region in the scene (maximum flux) for both the indoor
and the outdoor environments. For both scenes, we did
not find a significant difference in constancy indices
(indoor: t(135) = −1.47, p = 0.14; outdoor: t(132)

Figure 13. Color constancy indices when silencing the local
surround cue along with indices for the baseline measure in the
indoor (top) and outdoor (bottom) environments. The results
are grouped by illuminant (color-coded), with the baseline
results on the left and the cue-silencing results on the right. All
other markings are the same as in Figure 12. Silencing the local
surround cue had a significant effect on color constancy in both
scenes (p < 0.001). Post hoc contrasts showed that the green
illuminant in the outdoor scene reduced constancy more than
the other illuminants (p < 0.001).

= −0.24, p = 0.81). The mean percentage drop in
constancy was 6.8% (from 96.7% to 89.9%) and 0.9%
(from 85.2% to 84.4%) for the indoor and outdoor
scenes, respectively.
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Figure 14. Color constancy indices after silencing the maximum
flux cue in the indoor and outdoor scenes, along with baseline
results. Markings are the same as in Figure 13. Color constancy
after silencing this cue was not significantly different from the
baseline measurements.

Effect of spatial mean color (adding objects)

Figure 15 shows the effect of silencing the spatial
mean color by adding new objects to the scene. In both
scenes, we found a significant reduction in constancy
comparable to the effect of silencing the local surround
cue (indoor: t(135) = −4.10, p < 0.001; outdoor:
t(132) = −2.61, p = 0.01). On average, the percentage
reduction in color constancy index was 20.6% (from

Figure 15. Color constancy indices after silencing the spatial
mean color by adding objects, for both the indoor and outdoor
environments, along with baseline results. Markings are the
same as in Figures 13 and 14. Silencing the spatial mean cue in
this way significantly reduced color constancy indices (p ≤
0.01).

96.8% to 76.2%) in the indoor scene and 9.7% (from
84.0% to 74.3%) in the outdoor scene.

Effect of spatial mean color (changing
reflectances)

Figure 16 shows the effect of silencing the spatial
mean color by changing the reflectances of objects
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Figure 16. Color constancy indices after silencing the spatial
mean color by changing object reflectances, along with baseline
results. Markings are the same as in Figures 13 to 15. Silencing
the cue in this way greatly affected constancy (p < 0.001).

already present in the scene. We see that silencing the
cue in this way results in almost no color constancy:
The average drop in constancy percentage was 67.3%
(from 93.9% to 26.6%) and 66.1% (from 85.6% to
19.4%) in the indoor and outdoor scenes, respectively
(indoor: t(135) = −14.0, p < 0.001; outdoor: t(132) =
−16.9, p < 0.001).

Summary

Figure 17 gives an overall sense of the effects on color
constancy of silencing each mechanism by plotting the
percentages from each cue condition averaged across
illuminant and scene. We can see that the outcome of
each cue silencing is comparable across illuminants
and scenes. Silencing the spatial mean cue by adding
objects has a similar, mild effect on color constancy as
silencing the local surround mechanism, while silencing
the spatial mean cue by changing the reflectances of
objects already present in the scene reduces constancy
to approximately 25%. The maximum flux cue hardly
affects constancy indices.

Differences between daylight and off-daylight
illuminants

We explored comparisons between daylight and
off-daylight illuminants within each silenced cue. For
all cues except Maximum Flux in the outdoor scene,
the mean drop in constancy was higher for off-daylight
than daylight illuminants; however, this difference
was significant only for the Local Surround cue in
the outdoor scene and the Spatial Mean: Changing
Reflectances cue in the indoor scene (see statistics in
Table 1). Collapsing across all cues, we find that the
off-daylight illuminants were more impacted by the
cue silencing (indoor: F(2, 137) = 24.9, p < 0.001;
outdoor: F(2, 134) = 32.0, p < 0.001). For the indoor
scene, the average drop in constancy for daylight
illuminants was 25.2% and for off-daylight illuminants
was 32.3%. For the outdoor scene, the average drop
was 17.5% for daylight illuminants and 24.7% for
off-daylight.

Individual differences

We calculated the Pearson correlation coefficient
of the constancy indices between observers for each
scene. Observers were generally well correlated with
each other, with an average correlation coefficient of
0.62 for the indoor scene and 0.51 for the outdoor
scene. Observers 5 and 10 in the indoor scene
and Observer 19 in the outdoor scene differed the
most from the other observers. Figure A.4 in the
Appendix explores differences among the neutral
matches under all cue conditions; observers are largely
consistent.

Discussion

Our results confirm previous findings that color
constancy can be quite high in natural, immersive
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Figure 17. Color constancy indices per cue condition, averaged across illuminants and scenes. Open circles are participants from the
indoor scene and filled circles from the outdoor scene. All other markings are as in Figures 13 to 16.

settings. Our investigation of three basic mechanisms
for color constancy has resulted in a more elaborate
picture on the importance of these mechanisms.
Local context plays an important role, especially when
context and illumination color interact with each other.
Maximum flux, or “bright is white,” did not have much
of an effect in our settings, which might indicate that
the relevance of the brightest object might play a role.
The importance of global average color, or the “gray
world assumption,” depends on the scene. When all
objects are corrected to keep mean color constant
under an illumination change, color constancy breaks
down. When new objects are embedded in an existing
scene, they have a much reduced effect on constancy.
All of these findings show that it is useful to study
color constancy in naturalistic settings and that VR
technology is a suitable tool to do so.

Color constancy mechanisms

Color constancy is a particularly interdisciplinary
field. It has long been studied for basic vision research
and became of great interest with the widespread use
of color photography and film. With the advent of
smartphones, probably more photographs and videos
are taken than ever before, and proper color balancing
is essential for viewing images under different lighting
contexts. Thus, a multitude of algorithms for this
task have been developed that allow estimating and
compensating for illuminant effects, commonly known
as “white balance” (Barnard et al., 2002; Gijsenij &
Gevers, 2011; Gao, Yang, Li, & Li, 2015; Akbarinia
& Parraga, 2018; Ulucan, Ulucan, & Ebner, 2022).

Most recently, deep neural networks were introduced
for color constancy (Lou, Gevers, Hu, & Lucassen,
2015; Akbarinia & Gil Rodríguez, 2020; Xu, Liu, Hou,
Liu, & Qiu, 2020; Flachot et al., 2022; Heidari-Gorji &
Gegenfurtner, 2023) and for illuminant estimation, even
in challenging multi-illuminant scenarios (Li, Wang,
Brown, & Tan, 2022). There is good agreement in basic
and applied research that the three cues we investigated
here are of utmost importance for man and machine.

We used VR to evaluate color constancy in an
indoor and outdoor scene. This allowed us to achieve
the high degrees of constancy observed in previous
real-world immersive experiments (Kraft & Brainard,
1999; Mizokami, Ikeda, & Shinoda, 2004; Olkkonen
et al., 2010; Pearce et al., 2014; Morimoto, Mizokami,
Yaguchi, & Buck, 2017; Gupta, Gross, Pastilha, &
Hurlbert, 2020; Gegenfurtner et al., 2024). Our results
demonstrate the advantages of using virtual reality for
such studies: the ability to have good cue control, to
reproduce colors with high accuracy, and to manipulate
scenes in real time, all while preserving the naturalism
and immersion of the scenes. In the following sections,
we will discuss our findings for the three mechanisms
separately.

Local surround
The effect of the local surround cue is well

supported by previous literature (von Kries, 1905;
Land & McCann, 1971; Land, 1986; Valberg &
Lange-Malecki, 1990; Foster & Nascimento, 1994),
and early color constancy algorithms typically
calculated the cone-excitation ratios between an object
and surrounding areas to account for it. The most
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important new aspect of our results is that there are
interactions between illumination color and the color
of the local surround. There was an overall effect of
silencing the local surround cue (see Figure 13), but the
effect was greater under the green illuminant. This was
significant for the outdoor scene, and there was a strong
trend in the indoor scene.

The particular effect of this cue on the green
illuminant is likely because we used a rose-colored
surround. This color is most opposite to the green
illuminant in an opponent color space and thus leads to
a color-contrast effect: The greenish lizard competitors
appear even greener on the rose-colored leaves and so
observers perceive one of the middle competitors to
be more like the “Lonely Lizard” reference (Chevreul,
1861; Helmholtz, 1867; Kirschmann, 1892). These
important interactions between local contrast and
global illumination need to be explored in further
experiments. It is also of interest that our modest
manipulation of silencing the immediate surround
already led to a noticeable drop in CCIs. It is unknown
what extent of an object’s surround might still have an
impact on its perceived color, as well as the chromatic
variation in that surround.

Maximum flux
Interestingly, the maximum flux cue (Land &

McCann, 1971) did not have any significant effect on
color constancy indices in our study, despite being
frequently used in computational color constancy
algorithms (Rizzi, Gatta, & Marini, 2002; Ebner,
2003; Garud, Ray, Mahadevappa, Chatterjee, &
Mandal, 2014) and as a popular benchmark for those
computational methods. While this cue has been
studied for its role in lightness constancy (Cataliotti
& Gilchrist, 1995; Gilchrist et al., 1999; Sharan, Li,
Motoyoshi, Nishida, & Adelson, 2008; Anderson,
Whitbread, & de Silva, 2014; Zeiner & Maertens, 2014),
not as much psychophysical work exists on its role in
color constancy. Kraft and Brainard (1999) observed
a marked decrease in constancy to an average of 33%
when the maximum flux cue was silenced. However,
in their case, the region of maximum flux was also
the region surrounding the text patch. Thus, the local
surround cue was also affected by their manipulation.
Linnell and Foster (2002) found maximum flux to be
a better cue for color constancy than spatial mean
only when Mondrian patches were no smaller than
1° (although in their experiments, observers made
illumination matches, not object matches). Golz and
MacLeod (2002) argued that not only the brightest
region is important for judging illumination, but that
more generally, a correlation between luminance and a
particular hue (e.g., “bright is red”) might be used by
the visual system. In our experimental design, only the
brightest object is affected by our silencing operation,

but not any potential correlation of the illuminant with
the luminance of a particular hue.

Our results do show a trend toward a contribution
of maximum flux, and there might be several reasons
why it did not play a more important role. In the
indoor scene, we had chosen the lamp as the brightest
object whose chromaticity we held constant across
illuminations. The effect should be that the lamp would
always appear as bright and white, anchoring the
perception of all other colors in the scene. Instead, it
seems that other cues such as the global average color
determined perceived illumination, and the lamp’s
color was perceived as chromatically biased. The
advent of light sources with largely variable spectra
might support this interpretation of the scene. In the
outdoor scene, we introduced a new object to the
scene, a blanket sitting on the large cliff. While the
blanket’s size was larger than the lamp’s, it still did
not have any effect on the degree of constancy. To
solve this riddle, we plan to run further experiments
systematically exploring the size of the brightest object
and ways to give that object a more prominent role in
the scene.

It is also possible that the restricted dynamic range
of the VR headset prevented a clear effect of maximum
flux. The OLED screen does have an exquisite dynamic
range, but the luminance difference between the
brightest object and other bright objects might not have
been large enough. In the natural world, the brightest
regions are often specular reflections of the light
source (Hurlbert, 1998), and these would be orders of
magnitude brighter than other objects. However, they
cannot readily be displayed on computer screens and
are challenging even for high dynamic range systems.
Newer headsets are now capable of providing a wider
dynamic range and higher luminance values of up to
5,000 cd/m2.

Spatial mean color
This classic cue, also known as the “gray world”

hypothesis, postulates that humans account for the
illuminant by recalibrating the average color of the
scene to gray (Buchsbaum, 1980), thus eliminating the
contribution of the illuminant. While there are known
counterexamples to this account of color constancy
(Gilchrist & Jacobsen, 1984; Bäuml, 1994; Jenness &
Shevell, 1995; Brown & MacLeod, 1997; Webster &
Mollon, 1997; Bloj, Kersten, & Hurlbert, 1999; Kraft
& Brainard, 1999; Golz & MacLeod, 2002; Ennis
& Doerschner, 2019), it is probably still considered
the most important cue. Our results supplement
earlier research by suggesting that the spatial mean
color computation is dependent on some sort of
segmentation of the scene, rather than a pixel-wise
computation. The effect of grouping and segmentation
on perception is not new (Anderson & Winawer, 2005;
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Werner, 2006; Gilchrist & Radonjić, 2010; Ennis &
Doerschner, 2019); however, it is not clear exactly what
kind of segmentation observers might be using. A
simple partitioning of foreground versus background
is likely not the explanation. One might say that
observers could have segmented the outdoor scene
into the foreground’s floating, “moon-like” objects
and the background’s more natural objects and then
discard the foreground objects in order to be color
constant, but this would be more difficult for the
indoor scene, where the added objects are affixed and
not easily separable from the rest of the scene. Other
work suggests that scenes might be separable based
on spatial frequency bands (high- vs. low-frequency
content, the latter of which the spatial mean would
fall under) (Dixon & Shapiro, 2017). However, at least
along the luminance and chroma dimensions (see Scene
statistics in Appendix), we find little differences in
the spatial frequency content between the two scenes.
Significant differences possibly exist along more relevant
dimensions, such as hue, but a thorough quantification
of these statistics and systematic exploration of
their relationship is beyond the scope of this
study.

One significant aspect of the Changing Reflectances
cue silencing is that almost all of the static objects
changed between illuminant scenes. This means we are
essentially testing if observers are color constant in an
ever-changing environment. One could argue that this
would result in poor color constancy because observers
recognized that the structure in each scene is the same
and thus expected that the reflectances of the objects
are exactly the same across illuminants. But we know
that humans are largely color constant when a given
object is moved around to new scenes with different
lighting. One way to test this would be to change
noticeable parts of the scene under each illuminant
such that the observers would recognize the scenes
as different and eliminate any assumption that the
scenes, and therefore object reflectances, are the same.
Alternatively, observers may instead have had some
prior idea about possible object reflectances in an office
scene or a forest scene, whether due to some calculation
of the optimal colors under a given illuminant
(Morimoto, Kusuyama, Fukuda, & Uchikawa, 2021)
or memory colors of certain recognizable objects
(Granzier & Gegenfurtner, 2012) or of schemas or gists
of scenes (Castelhano & Henderson, 2008). Thus, the
reflectances chosen to balance the spatial mean color
under some of the illuminants may have been perceived
as unlikely to occur. One could test this by creating
abstract scenes and similarly manipulating reflectances
under each illuminant. But results from Gilchrist and
Ramachandran (1992; see also Ruppertsberg & Bloj,
2007; Langer, 1999) suggest at least that color constancy
would not be entirely eliminated. They asked, “Is a
red room under white light discriminable from a white
room under red light?” and found that observers could

distinguish the rooms due to the interreflections in the
shadows.

It is important to note that, in our two
implementations of silencing the spatial mean cue,
the local surround cue was affected differently. In the
Adding Objects scenes, the lizards were never placed on
the added objects. Thus, with the exception of added
interreflections, there was little difference between the
immediate surround of the lizards in these scenes and
in the baseline scenes. Alternatively, in the Changing
Reflectances scenes, almost all of the objects on which
the lizards sat were different compared to the Baseline
scene, and as a whole, these objects encompassed
almost the entire scene. This means that long-range
as well as local contrast between lizard and surround
was different between the two spatial mean scenes and
may have affected constancy. Supporting this, we can
see from Figure A.2 in the Appendix that the Adding
Objects scenes contained a wider range of colors than
the Changing Reflectances scenes. Several studies have
shown that the chromatic variability surrounding an
object can have varied effects on the object’s color
appearance, even if the average color of the surround
is equal (Jenness & Shevell, 1995; Brown & MacLeod,
1997; Mausfeld & Andres, 2002). Results from Golz
and MacLeod (2002) suggest that the correlation
between luminance and chromaticity across a scene
(specifically redness) can be diagnostic of the illuminant
(see, however, Ciurea & Funt, 2004; Granzier, Brenner,
Cornelissen, & Smeets, 2005). Additionally, the location
of the added objects in relation to the lizards might
greatly affect local adaptation on the retina—since the
added objects, which the lizards were never placed on
top of, were otherwise irrelevant. Observers looked
at the frames and ivy plants in the indoor scene, with
frequencies ranging from 12% to 24%. We plan to
further examine individual variability by comparing
observer responses with their eye movements around
the scenes.

Conclusions

Our results show that VR is a powerful method to
study color constancy in natural, photo-realistic scenes.
Not only can high levels of constancy be achieved, but
the scenes can be much more easily manipulated and
cues to constancy can be experimentally investigated in
ways not possible in real-world setups. This paves the
way for experiments with stimuli having more complex
material properties and experiments with multiple
illuminations within one scene. At the conceptual level,
our results are based on the important experiments
by Kraft and Brainard (1999), which we replicate and
extend. Our results show that color constancy is not
pixel based but rather depends on the objects within a
scene and their interaction with the illumination color.
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Appendix

Scene statistics

We compared the color distributions of the Baseline
and two Spatial Mean scenes under each illuminant
(with no lizards). We used the shots taken of the
scene using the I29 imaging colorimeter (see Spatial
mean: adding objects or changing reflectances) and,
in addition to the mean CIExy chromaticities already
calculated (Figure A.1), computed the mean in CIELAB
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Figure A.1. Spatial average color across scenes for the Baseline (squares), Spatial Mean: Adding Objects (circles), and Spatial Mean:
Changing Reflectances (triangles) conditions in CIExy chromaticities (top: indoor; bottom: outdoor). On the left is a shot taken by the
colorimeter using the AR/VR lens of the indoor baseline scene under the yellow illuminant (luminance only shown). The average color
for the baseline condition is plotted in all plots, respective of scene (squares color-coded by illuminant). The left plots show the
spatial average color for the Spatial Mean: Adding Objects condition and the rightmost plots for the Spatial Mean: Changing
Reflectances condition (circles and triangles, respectively, color-coded by illuminant). See text for details on measurement collection.

and plotted the distribution of pixels. Figure A.2 plots
a representation of these color distributions (scaled for
visibility—see figure caption). We can see that adding
objects (squares) to shift the spatial mean color to
neutral results in an elongation of the color distribution
in the opponent color direction, but this elongation is
not present in the Spatial Mean: Changing Reflectances
scenes (triangles). We also see for many of the scenes
that the distribution of colors is slightly larger for the
outdoor scenes than the indoor scenes.

We also explored the spatial frequency content
of various scenes in the luminance dimension and
the chroma (CIELAB C*) dimension. Overall, we
found negligible differences between scenes. We first
compared the indoor and outdoor scenes under the
neutral illuminant. While mean luminance and chroma
were slightly different, we otherwise found very minute
differences in all other spatial frequencies: Indoor mean
luminance was 3.90 cd/m2 greater than outdoor mean
luminance, and the average magnitude difference for

all other spatial frequencies was less than 0.001 cd/m2

(standard deviation <0.001). Along the chroma
dimension, the indoor scene had a mean chroma greater
by 4.27; the average magnitude for all other spatial
frequencies was less than 0.001 (standard deviation
<0.001). We also compared the Adding Objects and
Changing Reflectances scenes under the blue illuminant
and again found negligible differences. In the indoor
environment, we found a mean luminance difference
of 0.96 cd/m2 (Adding Objects was greater) and an
average magnitude difference less than 0.001 cd/m2

(standard deviation <0.001) for all other spatial
frequencies. In the chroma dimension, Adding Objects
had a mean value 5.13 points higher than Changing
Reflectances; the average magnitude difference for all
other spatial frequencies was also very low (mean <
0.001 C*; standard deviation = 0.002). In the outdoor
environment, there was a mean luminance difference
of 4.92 cd/m2 (Adding Objects was greater) and an
average magnitude difference less than 0.001 (standard
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Figure A.2. Representation of the distribution of colors for the Baseline, Spatial Mean: Adding Objects, and Spatial Mean: Changing
Reflectances cue conditions under each illuminant for the indoor and outdoor scenes, plotted in CIELAB. Markers represent the mean
pixel color across each scene and are color-coded by illuminant. Marker shapes are as indicated in the legend. Shape of distribution
was calculated by aggregating pixels from each of eight images taken by the colorimeter (see Spatial mean: adding objects or
changing reflectances) and plotting them in CIELAB. Distance of each pixel color from the scene mean was calculated and averaged
within 10° bins around scene mean. Plotted are these averages, scaled down by 5 to reduce clutter. Bottom plots are zoomed-in
versions of top plots.

deviation = 0.002). For chroma, Adding Objects had a
mean chroma higher by 3.59 points; for all other spatial
frequencies, the average magnitude was again less than
0.001 (standard deviation = 0.002).

Results: Neutral illuminant

Measurements made under the neutral illuminant
for each cue condition served as a control that the

results obtained under the chromatic illuminants
were not due to artifacts of the manipulations. We
found no significant difference between the observers’
matches under the neutral illuminant across all five
conditions (one-way unbalanced ANOVA on a linear
mixed-effects model with cue as a factor and observer
as a random-effects variable; indoor: F(4, 33) = 1.50, p
= 0.22; outdoor: F(4, 33) = 0.47, p = 0.76). Figure A.3
plots the matches in competitor space for each observer
for the two scenes. One can see that observers were
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Figure A.3. Observer matches under the neutral illuminant for all cue conditions for both scenes. The location of each match with
respect to the five competitors is plotted on the y-axis and jittered slightly along the x-axis to improve visibility. The darker boxed
region denotes ±1.96 standard errors of the mean and the lighter region denotes ±1 standard deviation from the mean. The
perfect-constant and zero-constant match are the same under the neutral illuminant and are marked here as a gray horizontal line.
Two other competitors (one in the yellowish direction and one in the bluish direction) are also plotted as horizontal lines. Observer
matches were calculated with an adapted MLDS algorithm (see Analysis section).

quite good at remembering and choosing the right
lizard (the perfect-/zero-constant lizard). Note that
when calculating the color constancy indices for the
cue conditions, we recalculated the location of the
perfect-constant and zero-constant competitors based
on each observer’s average match across the neutral
conditions (see Analysis for details).

Average interobserver Pearson correlation coefficient
was 0.03 for the indoor scene and 0.06 for the outdoor.

Figure A.4 shows the neutral match for each participant
(x-axis) under the five conditions (color-coded: black,
Baseline; blue, Local Surround; orange, Maximum
Flux; purple, Spatial Mean: Adding Objects; green,
Spatial Mean: Changing Reflectances) for both indoor
and outdoor scenes. The y-axis plots three competitors,
with the middle one representing the perfect-constant
match.
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Figure A.4. Individual differences in matches under neutral illuminant for indoor (top) and outdoor (bottom) scenes. Observer IDs are
along the x-axis (note that different sets of observers participated in the indoor vs. outdoor experiments). Along the y-axis are the
locations of the match in competitor space, with the perfect-/zero-constant match and two competitors labeled. Matches for the
different cue conditions are described in the legend and are connected with lines.
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