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Purpose: The purpose of this study was to estimate the distribution of the true rates of
progression (RoP) of visual field (VF) loss.

Methods: We analyzed the progression of mean deviation over time in series of ≥ 10
tests from 3352 eyes (one per patient) from 5 glaucoma clinics, using a novel Bayesian
hierarchical Linear Mixed Model (LMM); this modeled the random-effect distribution of
RoPs as the sumof2 independentprocesses following, respectively, a negative exponen-
tial distribution (the “true”distribution of RoPs) and aGaussian distribution (the “noise”),
resulting in a skewed exGaussian distribution. The exGaussian-LMM was compared to a
standard Gaussian-LMM using the Watanabe-Akaike Information Criterion (WAIC). The
random-effect distributions were compared to the empirical cumulative distribution
function (eCDF) of linear regression RoPs using a Kolmogorov-Smirnov test.

Results: The WAIC indicated a better fit with the exGaussian-LMM (estimate [standard
error]: 192174.4 [721.2]) than with the Gaussian-LMM (192595 [697.4], with a difference
of 157.2 [22.6]). There was a significant difference between the eCDF and the Gaussian-
LMMdistribution (P<0.0001), but notwith the exGaussian-LMMdistribution (P=0.108).
The estimated mean (95% credible intervals, CIs) “true” RoP (−0.377, 95% CI = −0.396
to −0.359 dB/year) was more negative than the observed mean RoP (−0.283, 95% CI =
−0.299 to −0.268 dB/year), indicating a bias likely due to learning in standard LMMs.

Conclusions: The distribution of “true”RoPs can be estimatedwith an exGaussian-LMM,
improving model accuracy.

TranslationalRelevance:Weused these results todevelopa fast andaccurate analytical
approximation for sample-size calculations in clinical trials using standard LMMs, which
was integrated in a freely available web application.

Introduction

Glaucoma is an optic neuropathy characterized
by progressive damage to the optic nerve head and
damage to the visual field (VF). Loss of VF results
from damage and death of the retinal ganglion
cells, the axons of which converge on the optic
nerve head (ONH) and are damaged as the disease
progresses. VF progression is monitored clinically
through standard automated perimetry (SAP), a test

during which patients are asked to fixate on a central
target while light stimuli of varying intensity are
presented at different locations in their VF. Patients
are asked to respond by pressing a button every time
a stimulus is seen to map their sensitivity across
the VF.

Changes in the VF are quantified in a variety of
ways. One common method is to calculate the rate
of progression (RoP) of a global index of VF sensi-
tivity, such as the mean deviation (MD), over time
through linear regression. This method is commonly
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Figure 1. Simulated examples, 20,000 eyes, and 11 tests over 10 years. The histogram of the true rates of progression (RoPs) of the mean
deviation (MD) in the simulation is reported on the left. On the right, the distribution of the RoPs estimated with simple linear regression in
the presence of Gaussian noise on theMD (standard deviation= 2 dB). The bars represent the estimated probability density, that is, the total
area under the histogram is normalized to 1.

used in clinical care and has been proposed for random-
ized clinical trials (RCTs).1–4 Because of the progres-
sive and irreversible nature of the disease, VF sensitiv-
ity is only expected to worsen, resulting in a negative
RoP, or remain unchanged over time. However, when
the RoP is calculated through linear regression, the
distribution of RoPs in clinical populations5–11 is
negatively skewed, but many patients show a positive
RoP. Findingmethods to estimate the underlying distri-
bution of “true” RoPs would help the interpretation
of the results of population-based studies and, impor-
tantly, of RCTs quantifying the effect of different treat-
ment strategies.

A few attempts have been made to describe
this distribution analytically. Andrew Anderson9,10
proposed a hypergeometric-secant distribution for the
RoPs in a clinical glaucoma cohort. Zhang et al.11
and Swaminathan et al.12 used a log-Gamma distri-
bution for a similar purpose in their modeling of VF
progression, where the log-Gamma distribution was
used to model the distribution of the random effects
in a hierarchical linear mixed effect model (LMM).
Although these distributions fit the data by captur-
ing some essential features (mainly, the skewness),
they fail to give a description for a plausible under-
lying process of VF progression. In fact, a purely
negative distribution of true RoPs is expected to
arise to a negatively skewed distribution with positive
values when measured in the presence of noise (see
an example in Fig. 1). Additional factors, such as

patients’ learning,13 can contribute to the presence
of observed positive RoP slopes and contaminate
the true distribution. This relationship between true
distribution and its noisy estimate from data has
been already highlighted with simulations by Andrew
Anderson.9

In this work, we model, with few assumptions, the
underlying distribution of true RoP slopes, isolating
the effect of measurement noise and learning. This
method is based on hierarchical modelling of the RoP
of MD in a clinical population.We validate ourmethod
in a large cohort of eyes with long test series. We then
provide a simple analytical description of the result-
ing distribution and show how this can be used to
model a treatment effect in simulations.We finally show
how this description can be used to calculate analyt-
ical power curves for LMMs for a variety of clinical
trial designs, without making use of time-consuming
simulations.2,4

Methods

Clinical Database

This database has been previously described
elsewhere. VF data were extracted from an electronic
medical record (Medisoft; Medisoft Ltd., Leeds, UK)
from five National Health Service Hospital Trust
glaucoma clinics in England in November 2015.14–16
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Figure2. Descriptive plots of thedataset used in this study. The intercepts and rates of progression are estimated through linear regression.
The average time interval is the average time difference between pairs of consecutive tests in each series. The time span is the overall time
length of each series. Mean deviation (MD) intercepts, slopes, and P values were calculated through ordinary least square regression. Cutoff
values for moderate and fast progression were−0.5 dB/year and−1 dB/year, respectively. Significant progression was defined as a negative
MD slope with a P value < 0.05.

All patient data were anonymized upon data extrac-
tion and transferred to a single secure database at City,
University of London. Subsequent analyses of the
data were approved by a research ethics committee
of City, University of London. The study adhered
to the Declaration of Helsinki and the General Data
Protection Regulation of the European Union. The
VFs included in this analysis were 24-2 tests performed
with an Humphrey Field Analyzer (HFA), Goldmann
III stimulus size and the Swedish Interactive Testing
Algorithm (SITA Standard or SITA Fast). The whole
database was composed of 576,615 VFs from 71,361
people, obtained between April 2000 and March 2015.
VFs with a percentage of false positive errors ≥ 15%
were excluded. No exclusion criteria were applied
on fixation losses or false negative errors, following
evidence from the literature.17,18 Additional metrics,
such as gaze tracking data, were not available in this
dataset and could not be used to assess reliability. We
included all patients with at least 10 VF tests performed
over at least 4 years in one or both eyes and an MD
worse than −2 decibels (dB) in at least 2 (not necessar-
ily consecutive) VFs19–21 in the same eye. This was used
as a surrogate for the diagnosis of glaucoma, in the
absence of a definitive label. Subjects with this level of

damage and length of follow-up were likely to be either
strong glaucoma suspects or persons with glaucoma-
tous optic neuropathy. However, VF loss from other
causes, such as vascular or neurological issues, could
not be definitively excluded. VFs performed after any
ocular surgery other than cataract were also excluded.
Finally, only one eye from each patient was selected,
at random if both were eligible, leaving 44,371 VFs
from 3352 eyes. Because only one eye was included,
the term eye and subject will be used interchangeably.
This set of eyes has been used previously for other
analyses.4,22

Patients’demographics were (median and interquar-
tile range [IQR]): baseline age 68 years (IQR = 60 to
75 years); average best corrected visual acuity (BCVA)
0 (IQR = −0.1 to 0.2) logMAR; average intraocular
pressure (IOP) 16 (IQR = 14 to 18) mm Hg; average
MD −6.44 (IQR = −11.06 to −4.07) dB; average
pattern standard deviation 5.68 (IQR = 3.27 to 9.06)
dB. Average values were calculated from all the avail-
able data recorded during the time frame of the tests.
The median length of follow-up was 11 years (IQR =
8 to 13 years) and the number of VFs per series was
12 (IQR = 11 to 15). Descriptive plots are reported
in Figure 2.
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Hierarchical Modeling of Progression

Model for the Slope
For our modeling, we assumed that the “true”

underlying linear RoP for the MD could take values
that were either zero or negative. Most distributions
with a positive support for their probability distribu-
tion function (PDF) can describe such a phenomenon
with a simple sign reversal. We chose the exponen-
tial distribution because of its plausibility and simplic-
ity (it is described by a single parameter, λ, see
Appendix). As shown in Figure 1, a set of “true”
exponentially distributed RoPs will exhibit the typical
two-tailed skewed distribution seen in clinical datasets
when estimated with linear regression in the presence
of noise. When the noise is normally distributed,
the resulting distribution is an exponentially modified
Gaussian distribution (exGaussian). The formula for
the PDF and the cumulative density function (CDF)
of this distribution are reported in the Appendix. In
simpler terms, each observed RoP can be thought of
as the sum of a random draw from two indepen-
dent distributions, an exponential (the “true” rate)
and a Gaussian (the noise). Therefore, the mean of
the resulting exGaussian distribution is equal to the
sum of the means of the two underlying exponential
and Gaussian distributions. Similarly, the exGaussian
variance is equal to the sum of the two variances. Note
that the PDF of the distribution of the sum of two
random variables is obtained as the convolution of
their PDFs. The exGaussian PDF is the convolution of
a Gaussian and exponential PDFs.

In this application, the standard deviation (SD) of
the Gaussian noise is the standard error (SE) of the
linear regression slope, which is determined by the
number of observations (i.e. tests), the variance of the
independent variable (i.e. time), and the variance of
the dependent variable around the prediction, that is,
the noise of the MD, assumed Gaussian. This latter
assumption ensures that the noise distribution of the
slope is also Gaussian, even for small sample sizes, that
is, a small number of tests in the series.

Model for the Intercept
A model for the intercept for linear MD progres-

sion cannot be as easily constrained as the model for
the slope. Visual inspection of the distribution of the
empirical intercepts (see Fig. 2) would suggest a distri-
bution similar to that of the slopes. Although the exact
distribution cannot be an exGaussian (for reasons that
will be explained), it is useful to understand whether it
can be a practical approximation.

In an ideal and simplified scenario, all patients start
with a “healthy” MD of exactly 0 dB (i.e. at the exact

expected sensitivity values for age-matched healthy
subjects), progress with exponentially distributed RoPs
and all have their first VF test at the same time from
the development of glaucoma (for example, 5 years).
In this case, the “true” distribution of baseline MDs
will also be exponential, because it would result from
the product of the RoPs and the interval to first detec-
tion (i.e. RoP dB/year × 5 years in this example).
However, there are at least three components of noise
that can contaminate this ideal scenario. One is the
measurement noise, reflected in the SE of the intercept,
similarly to the slope. This would produce an exGaus-
sian distribution if the error is assumed Gaussian. The
second component is intersubject variability, that is,
not all patients have a “true”MD of 0 dB before devel-
oping glaucoma. If the distribution of “true” healthy
MD values is also Gaussian, adding this element of
noise would also result in an exGaussian distribution.
Finally, a third component is the actual time interval
between the development of glaucoma and the first
VF test. This is obviously unlikely to be the same
for all subjects, as assumed in the ideal example. This
interval can be described by a strictly positive random
variable, such as one following a Gamma distribution.
The product of a Gamma and an exponential distribu-
tion is not an exponential distribution,23 but would still
result in a single-tailed negative distribution which can
be approximated with an exponential distribution with
mean equal to the product of the means of the original
exponential and Gamma distributions. The exact PDF
for the product distribution can be expressed analyti-
cally, but its parameters are difficult to reliably estimate,
especially in the presence of additional Gaussian noise.
A comparison between the exponential approximation
and the exact PDF in a simulated example is provided
in the Appendix.

From the above, although certainly not a “correct”
description, an exGaussian distribution for the inter-
cept appears to be a reasonable approximation. For
our main analyses, we chose a simplified model that
estimated the Gaussian noise only from the SE of
the intercept (see the next paragraph). An alternative
model, that included the effect of intersubject variabil-
ity, was also tested, but did not provide any improve-
ment, because the estimated intersubject variability
converged toward zero during fitting.

Bayesian Hierarchical Modeling
Bayesian computation was used to estimate the

parameters of a hierarchical LMM using Just Another
Gibbs Sampler (JAGS24) within the R environment
(R Foundation for Statistical Computing, Vienna,
Austria). The LMM modeled the trend of MD over
time, with two levels in the hierarchy, the popula-
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tion level and the subject level, because only one eye
per subject was included. At the subject level, the
model estimated an intercept and slope parameter
for each subject. Like in standard Gaussian-LMMs,
the response variable was assumed to be normally
distributed and homoscedastic around the predicted
value. This is a common assumption, although not
necessarily accurately reflective of the data.25 The
choice of a Gaussian random effect distribution for the
standard LMMdoes not have a strong theoretical justi-
fication, other than its relative simplicity, generalizabil-
ity, and widespread use in the literature.1,2,4,12,22,26–29

The intercept and slope for each subject were
modeled as random effects and sampled from a popula-
tion level distribution (higher level of the hierarchy).
The random intercepts and slopes followed an exGaus-
sian distribution. Instead of defining the exGaussian
PDF in the model, Bayesian computation allowed us
to replicate the process underlying the generation of
the observed data. This was achieved by sampling
values from the exponential and Gaussian distribution
separately and modeling the observed slope as the sum
of the two values.

The Bayesian procedure estimated, among other
population parameters, the parameter λ of the
exponential distributions and the mean of the
Gaussian noise for the slopes and intercepts. The
SD of the Gaussian noise was not estimated, but
rather calculated from the estimated residual SE for
the MD (σ e, i.e. the MD noise at the subject level).
More details on the implementation of the Bayesian
model are reported in the Appendix. One important
aspect to note is that each subject in the dataset had
a variable duration of follow-up time and number of
tests. This introduced variation in the SE of the slope
across subjects. Deriving the parameter sigma from
the SE of the residuals allowed us to account for this,
by calculating the expected SE of the intercept and
slope for each subject (see Appendix). The data were
also modeled with a standard Bayesian hierarchical
LMM, using a Gaussian distribution for both inter-
cepts and slopes. The two models were compared using
the Wantanabe Akaike Information Criterion (WAIC)
as implemented in the loo package for R.30 Note that,
because of our specification of the exGaussian-LMM,
the number of estimated parameters is the same for
both models, because the exGaussian-LMM does not
require an estimation of the between-subject level
variance (see Appendix). This is, in fact, given by
the sum of the variance of the exponential distribu-
tion (which is simply 1/λ2) and the variance of the
Gaussian noise distribution (derived from the residual
SE). However, the WAIC is influenced by the choice of
prior distributions, which were partially constrained

in our exGaussian-LMM to improve stability with
smaller datasets and shorter VF series (see Appendix).
The model comparison was therefore based on a
version of the exGaussian-LMM for which the prior
distributions were practically uninformative, so that
the prior information was similar to that provided
for the standard Gaussian-LMM (see Appendix). An
additional comparison was performed by evaluating
the empirical CDF of the RoPs and intercepts against
the CDF of the estimated Gaussian and exGaussian
distributions with a Kolmogorov-Smirnov test.31

We hypothesized that the mean of the Gaussian
noise for the RoP would capture the effect of learn-
ing, which would effectively introduce a positive offset
on the estimates of the “true” RoPs. We tested this by
fitting the exGaussian-LMM on VF series that were
progressively trimmed at the beginning, to observe
whether a positive offset in the mean would reduce by
eliminating earlier tests in the series, where the effect of
learning would be the greatest. We kept the minimum
series length at 10 VFs, as in the original analysis. The
sample size was therefore reduced at each trimming
step.

Rate of Progression According to Baseline Visual Field
Damage

We further estimated the exGaussian-LMMparam-
eters for different levels of baseline VF loss. The cohort
of patients was divided into three groups based on their
estimated baseline MD (average of the first 2 tests):
early (baseline MD ≥ −6 dB); moderate (−6 dB >

baseline MD ≥ −12 dB); and advanced (baseline MD
< −12 dB). Of note, the classification was applied to a
cohort already selected to have at least 2 tests with an
MD< −2 dB. For this analysis, the LMMwasmodified
so that three different values of the population param-
eters (i.e. the exponential rate, the Gaussian mean, and
the residual SE) were estimated, one for each severity
group. This is equivalent to fitting the LMMs on each
group separately, but obtains the parameter estimates
from the same Markov Chain Monte Carlo draws (see
Appendix). This allows statistical comparisons between
parameters estimated from the different groups. For
this comparison, we used a Bayesian equivalent of the
frequentistP value, derived from theP direction.27,28,32
Details are reported in the Appendix.

Simulations and Power Calculations

The population parameters estimated with the
exGaussian-LMM were used to perform computer
simulations of hypothetical treatment effects in RCTs.
One advantage of our modeling is that it allows for a
clear definition of a proportional treatment effect by
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scaling the parameter λ of the exponential distribu-
tion. This is different from previous attempts, where
a change in slopes was somewhat poorly defined and
achieved either by completely halting the progression
of a proportion of patients2 or by modifying observed
RoP slopes by an additive factor to achieve the desired
proportional change in the average RoP.4 Another
important difference is that previous attempts used
observed regression slopes to model the “true” RoP,
with simulated noise added to this “true” trend.2,4
However, empirically calculated slopes will also be
affected by noise, as explained previously. Instead, with
ourmethod, we simulated the “true”RoP slope for each
eye as a draw from the “denoised”exponential distribu-
tion of slopes.

The simulation procedure was as follows:

1. Perform a simple linear regression of MD over
time for each eye on the real VF series.

2. From the linear regressions, calculate the SE of
the residuals (σ e), an unbiased estimate of the
individual variability.

3. Select a sample size (N) and a treatment effect (E).
4. Randomly sample, without replacement, N

subjects for the placebo arm and N for the
treatment arm.

5. Generate “true” RoP values from an exponential
distribution with rate λ for the placebo arm and
λ/(1-E) for the treatment arm.

6. For each eye, generate a synthetic linear MD
series for a time vector t using the simulated RoP
for the slope and the real baseline MD as the
intercept.

7. For each eye, add Gaussian noise using the
subject specific variability calculated at point (2).

8. Fit an LMM and calculate the P value of the
interaction term between treatment and time
(treatment effect) – Method 1 (see later).

9. Fit simple linear regressions to the simulated data
and perform an independent sample t-test on
the “observed” slopes comparing the two arms –
Method 2 (see later).

10. Repeat 1000 times from (4) to (9) for increasing
N and E.

A larger value for the rate λ means a faster decay
of the exponential tail, that is, slower average progres-
sion in the sample (closer to 0 dB/year). The treat-
ment effect E indicated the proportional reduction
in the true RoP (e.g. a 30% neuroprotective effect
would mean dividing the rate λ by 0.7). The time
vector t indicated the time of 16 tests over 2 years
(with retest sessions), replicating the testing scheme
of the United Kingdom Glaucoma Treatment Study

(UKGTS) trial.33 In reality, the variability of the MD
varies with the level of damage.25 However, global
metrics, such as the MD, are predominantly influenced
by individual performance.4,34,35 Moreover, consider-
ing that we used the observed baselineMD as the inter-
cept for our simulated series and that the simulated trial
extended for only 2 years, it is reasonable to assume
that the variability measured from each subject over at
least 10 VFs (median of 11 years of follow-up) would
be a realistic representation of the variability exhib-
ited by that subject over such a hypothetical trial. Note
that empirical approaches based on standardizing and
permuting the observed residuals have the disadvan-
tage of providing a biased estimate of variability (the
SD of the residuals is smaller than the SE of the resid-
uals).

Method 1
For each simulation, we calculated a P value for

the difference in RoP between the two arms with an
LMM using the lme436 and lmerTest37 packages for
R. The LMM had the MD as the response variable,
with time (continuous) and treatment arm (factor) as
fixed effect predictors. An interaction term between the
treatment arm and time modeled the average differ-
ence in the RoP between the two arms. Random
effects for both the intercept and the slope at the
subject level were modelled as a bivariate Gaussian
distribution, which included the correlation between
the two parameters. Residuals were assumed condi-
tionally independent. The lmerTest package offers
various methods to calculate P values for LMMs,
which differ in the way they calculate the degrees of
freedom. A common choice is Satterthwaite’s method,
which provides an approximate t-distribution for the
parameters.37

Method 2
When complete data are available for all subjects (i.e.

all subjects have the same number of tests), which is a
common assumption in power calculations, the P value
obtained for LMMswith Satterthwaite’s method is well
approximated by that calculated from a two-sample
t-test on the empirical RoPs obtained with simple
linear regression. We confirmed this by performing a
two-sample t-test for all our simulations. We further
exploited this property to obtain analytical approxi-
mations of the LMM power curves by calculating the
expected variance and mean of the empirical exGaus-
sian RoP distributions, based on the testing schedule,
the average residual SE and the simulated exponential
distribution for the “true” RoP. These values for the
expected mean and variance were then used to analyti-
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cally calculate the power of a t-test for two samples with
unequal variances (using the pwr package for R).

Note that, by construction, the distribution of
the empirical slopes is in violation of the distri-
butional assumptions for the random effects made
by standard LMMs (Gaussian). However, for large
enough samples, the distribution of the estimates for
the fixed effect parameters is expected to converge to
a Gaussian. For the simulated RCTs, the power was
calculated as the proportion of simulations inwhich the
P value for the treatment effect with each method was
< 0.05. Confidence intervals for the power was calcu-
lated as 1.96 × SEp, where SEp is the standard error
for the probability of a binomial process, calculated as
SEp = √

pp<0.05 ∗ (1 − pp<0.05)/N, where pp < 0.05 is the
proportion of significant P values in the simulations
andN is the total number of simulations. Naturally, the
analytical approximation has the advantage of allowing
quick adjustments of the parameters to accommodate
for various trial designs, expected levels of variabil-
ity and neuroprotective effects. We developed an inter-
active web application in the Shiny environment38 to
allow users to experiment with the effect of these
parameters on the estimated power curves. The app
is available at https://giovannimontesano.shinyapps.io/
Sample_size/.

Results

Estimated Distribution of the Rates of
Progression

The Table reports the parameters estimated by the
LMMs. Figure 3 shows the estimated PDFs on top
of the empirical distributions. The exponential and
Gaussian components of the RoP distribution are also
plotted separately for the slopes, the main parameter
of interest. Note that the mean of the Gaussian noise
component was close but significantly different from

Table. Estimated Model Parameter Values for the
Slope
Model Parameter Estimate

ExGaussian-LMM Exponential mean −0.377 [−0.396 to −0.359]
Gaussian mean 0.094 [0.080 to 0.109]
Gaussian variance 0.037 [0.037 to 0.038]
Sample mean −0.283 [−0.299 to −0.268]

Gaussian-LMM Mean −0.285 [−0.301 to −0.270]
Variance 0.173 [0.163 to 0.184]

TheGaussian variance in the exGaussian-LMMcorresponds
to the average squared standard error of the slope. The
exponentialmean is−1/λ. The samplemean is the sumof the
exponential and gaussian means. LMM, linear mixed model.

0 dB/year. This would lead to biased estimates of the
average RoP, resulting from the sum of the mean of the
exponential distribution and the Gaussian distribution
(see Fig. 3C). Importantly, this biased sum corresponds
to the averageRoP estimatedwith theGaussian-LMM.

The WAIC indicated a significantly better fit with
the exGaussian-LMM (estimate and SE 192174.4 [SE
= 721.2]) than with the Gaussian-LMM (192595
[SE = 697.4327], difference 157.2 [SE = 22.6]). This
was confirmed by the Kolmogorov-Smirnov (KS) test
for the slopes, which showed no significant differ-
ence between the empirical CDF of the RoPs and
the estimated exGaussian distribution (P = 0.108),
but a highly significant difference with the estimated
Gaussian distribution (P < 0.0001). A table compar-
ing the WAIC for the two models for increasing series
length (from 4 to 10 tests) is provided as Supple-
mentary Material. For the distribution of the inter-
cepts, the exGaussian approximation was, as expected,
not as good as for the observed RoPs (KS = P <

0.0001). The empirical distribution showed a faster
decay in the negative tail compared to the predic-
tion. This is in agreement with theoretical expectations
(see Appendix). Nevertheless, a model with a Gaussian
distribution for the random effects on the intercepts
provided a significantly worse fit (WAIC: 192473.3
[SE = 710.6]) compared to the full exGaussian-
LMM (difference: 149.4 [SE = 22.4]). The random
effect estimates of intercepts and slopes obtained
with the two LMMs are reported as Supplementary
Material.

Figure 4 shows how the offset in the mean of
the Gaussian noise decreases by progressively elimi-
nating earlier tests in the series, indicating that it is
likely capturing the effect of learning. In contrast,
the estimate of the “true” average rate of progression
(the mean of the exponential distribution) remained
relatively unaffected. The observed mean RoP (the
same that would be measured with the standard
Gaussian-LMM) is biased by the learning effect in
the earlier tests. The Gaussian mean was effectively 0
dB/year at the seventh test.

Figure 5 shows a comparison of the ex-Gaussian
parameter estimates obtained in the three different
baseline severity groups. The mean of the Gaussian
component (probable learning effect) was significantly
more positive in the groups with moderate and
advanced estimated baseline damage, compared to
those with early loss. This resulted in a biased mean
RoP, which was more positive in the advanced group
than in the early group. In contrast, because it was
not affected by learning, the estimated “true” rate was
significantlymore negative in the groups withmoderate
and advanced loss.
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Figure 3. Empirical and estimated distributions for the intercepts (A) and slopes (B) in the dataset. The estimated population-level slope
parameters from the exGaussian andGaussian LMMsare shown in (C), with their corresponding 95%credible intervals. Note that the “sample
mean”is the estimated average for the slopes. This is directly estimated by the Gaussian-LMM, but can be obtained as a sumof the exponen-
tial and Gaussian distribution means in the exGaussian-LMM. The exponential and Gaussian components of the exGaussian distribution for
the slopes are reported in (D), together with the resulting distribution (black curve, obtained as the convolution of the exponential and
Gaussian probability distribution functions).

Statistical Power in the Simulated
Randomized Clinical Trials

Figure 6 shows the power for the LMM and two-
sample t-test on the empirical slopes in our simulated
RCTs, for different neuroprotective effects and increas-
ing sample sizes. The untreated “true” RoP was −0.38
dB/year (see the Table). The average residual SE of
the MD was 1.97 dB. There was excellent agreement
between the LMM and the t-test, with the largest
absolute difference in power being 0.1%. Disagreement
in determining a significant effect was observed only in
16 of 40,000 simulations (0.04%).

The analytical prediction was also in excellent agree-
ment with the simulations, with a mean absolute

difference in power of 1% (SD = 0.9%). The largest
absolute difference was 3.4%. These results were identi-
cal with the LMM and the t-test. The analytically
predicted values were outside the 95% credible inter-
vals (CIs) of the simulated values only in 4 simula-
tions, one when simulating no effect, where the simula-
tions resulted in a power lower than the expected
5% false positive rate, and 3 when simulating the
20% neuroprotective effect. These are highlighted
in Figure 6. We also report a comparison with
the power curves estimated with the residual SE
estimated from test-retest data (see Supplementary
Material), which are more likely to be reflective of
test noise in controlled environments, such as those of
RCTs.
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Figure 4. Estimated average value for the mean of the Gaussian distribution, the exponential distribution, and the combinedmean of the
exGaussian distribution (sample mean) describing the sample rate of progression for progressively trimmed series. The error bars indicate
the 95% credible intervals.

Discussion

In this work, we provide a modeling approach to
estimate the underlying distribution of RoPs, isolating
the effect of noise and learning. We made the results of
our modelling readily available to other researchers via
a user-friendly web application. The estimated distri-
bution shows good fit to the data, while providing fully
interpretable parameters. This is in contrast with previ-
ous attempts which mainly tried to capture the features
of the empirical distribution of RoPs,9,10,12 particu-
larly their skewness. This has important consequences.
In terms of clinical interpretation, it shows that noise
and learning can effectively mask the true rate of VF
progression. However, this method allows the estima-
tion of a plausible underlying distribution of “true”
rates in actual clinical populations. This is important
for the derivation of accurate population parameters.
For example, Figure 4 shows how the average rate of
progression would be biased by the effect of learning in
a naïve calculation. Our interpretation of the param-
eters is supported by specific results in our analysis.
In particular, progressively taking out the initial tests
in the series showed that the mean of the Gaussian
component of the estimated exGaussian distribution
(see Fig. 4) is likelymodeling the average effect of learn-

ing. This effect came very close to 0 dB/year at the
seventh test. This is in agreement with previous inves-
tigations,13 which estimated that the effect of learning
can extend to the sixth or seventh VF. The effect of
learning on population estimates is also clearly demon-
strated in our analysis by severity group (see Fig. 5).We
show that the effect of learning, and the consequent
bias on the average rate of progression, is stronger
in patients with a more advanced baseline MD. One
explanation for this result is the overestimation of
baseline damage in series affected by a strong learn-
ing effect or regression to the mean, because patients
who performed the worst in their first tests were more
likely to be classified as having moderate or advanced
baseline loss. Despite this, the “true” estimated RoP
was significantly faster in patients with moderate or
advanced baseline loss compared to patients with early
damage, as expected. However, the difference was
not significant between patients with moderate and
advanced damage. This was likely due to inaccurate
classification of baseline damage (again due to learn-
ing affecting the initial tests) and the perimetric floor
effect in truly advanced patients, which can positively
bias the RoP of global metrics.22

The exponential distribution of rates estimated with
the exGaussian distribution also offers straightforward
physiological interpretations in the context of the
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Figure 5. ExGaussian linear mixed model (LMM) parameter estimates (top panel) and slope distributions (bottom panels) in patients with
estimated early, moderate, and advanced baseline perimetric loss. The sample mean is the sum of the exponential and gaussian means,
equivalent to the estimate from a Gaussian-LMM (see Figure 3). Significance is expressed as a Bayesian P value (see Appendix for details on
its calculation). The error bars indicate the 95% credible intervals. The estimated values are reported in the Supplementary Material.

progression of the disease, because it avoids the need
to assume that the true rate of progression could be
positive. Finally, the exGaussian distribution effectively
captures the skewness in the data and can be used
in hierarchical models instead of the commonly used
Gaussian distribution, reducing the effect of shrinkage
towards the mean (see Supplementary Material). Such
a shrinkage can bias the trajectory of fast progress-
ing eyes toward the general trend of the population,
especially in those for which a smaller number of VF
tests is available. This is supported by the improvement
in WAIC compared to a Gaussian-LMM and the lack
of significant departure of the empirical CDF of the
RoPs from the estimated exGaussian, as shown by the

KS test (P= 0.108). Importantly, such amodel requires
the estimation of the same number of parameters as a
Gaussian-LMM, as described in the Methods section.
This is also another important difference from previous
attempts using different skewed distributions, which
instead required the skewness to be modelled with an
additional parameter.11

Such a characterization of the distribution of the
RoPs is also extremely advantageous in the design of
RCTs for glaucoma treatments, especially neuroprotec-
tion. Defining the effect of neuroprotection has always
been challenging, because treatment effects are often
defined as percentage change. However, the effect on
VF RoPs is rarely described by a simple shift in the
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distribution of the untreated rates. Previous attempts
have simulated a neuroprotective effect with a variety
of methods, ranging from halting the progression of
a proportion of patients2 to simply adding a positive
effect to the observed RoPs to change the average
rate by a predefined amount.4 Modeling the under-
lying “true” rate with a negative distribution, such
as a negative exponential, offers a univocal defini-
tion of percentage change in RoPs by simply scaling,
with a multiplicative factor, the “true” distribution.
This not only replicates the complex distributional
change in the observed RoPs that would be observed
with treatment, but also affects the individual rates
in a manner that replicates the underlying physio-
logical process. Moreover, in the absence of learning
(Gaussian noise mean = 0), a proportional change in
the “true” exponential distribution also results in the
same proportional change of the resulting exGaussian
distribution. It is interesting to note that this is not true
in the presence of learning. For example, in an RCT,
the learning effect is likely to be the same in both arms.

Therefore, the average difference in RoP, calculated,
for example, with standard LMMs, would only depend
on the average difference between the “true” RoPs
(exponential). However, learning can positively bias the
average RoP in both arms, and the same linear differ-
ence can result in various calculated “proportional”
effects. This creates inconsistencies in trial design
and in the interpretation and generalizability of the
results, especially when naïve patients are recruited. For
example, the treatment arm of the United Kingdom
Glaucoma Treatment Study (UKGTS), in which true
progression was likely to be slower, showed a positive
medianRoP (+0.12 dB/year), indicating a strong learn-
ing effect.39 Modeling an exGaussian distribution elimi-
nates such an ambiguity because the linear difference
in the average RoPs always corresponds to the same
proportional change in the “true” distribution of rates.

This principle has been applied for our simulation
experiments (see Fig. 6). It is interesting to note that
the power curves produced by these simulations are
in good agreement with those presented in a previ-
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ous paper, based on the same population.4 Moreover,
the exGaussian distributionmakes it straightforward to
calculate the expected variance and mean of the empir-
ical distribution of RoPs based on the expected test
variability, length of the follow-up and planned testing
schedule. This allows a simple analytical approximation
of the results of standard LMMs with a two-sample t-
test, as explained in the Methods section and demon-
strated in Figure 6, and makes it possible to translate
our results into a user-friendly web application (https:
//giovannimontesano.shinyapps.io/Sample_size/). One
important aspect to highlight is that the average resid-
ual SE estimated with linear regression from our
sample was 1.97 dB, larger than the values reported in
previous literature (closer to 1 dB).34,40 This discrep-
ancy is possibly explained by the fact that our sample
is composed of real-life test series over a long period
of time (≥ 10 years). On the one hand, therapeutic
intervention might have introduced deviations from a
simple linear trend over such a long follow-up. On
the other hand, suboptimal testing conditions might
have created larger test fluctuations, which would
be lower in more controlled testing conditions, such
as those of test-retest variability studies or prospec-
tively planned data collections. Such controlled testing
conditions are more likely to reflect the perimetric
noise that would be found in RCTs. We provide,
as Supplementary Material, an in-depth analysis of
the combined data from two perimetric test-retest
datasets.22,39,41,42 The average test-retest SD from these
datasets of MD was 0.94 dB, much closer to the litera-
ture, and was larger for patients with more advanced
damage, as expected. Power calculations using these
estimates are much more conservative and more likely
to be appropriate for trial scenarios; these have been
integrated in our web application and reported in
Figure 6.

The exponential distribution for the “true” RoPs,
combined with Gaussian noise, seems to accurately
describe the distribution of rates observed in this large
population. It should be noted that, for the exGaussian
to effectively describe the observed data, the VF series
need to be relatively homogenous in terms of number
of tests and duration of follow-up. This is because
series with different characteristics are, by definition,
not sampled from the same distribution, because
they would have different expected variance for the
noise component (the SE of the slope). However, the
exGaussian-LMM does account for such a heterogene-
ity in the estimation process, because the model calcu-
lates the expected SE of the slope based on the specific
test series for each eye. This means that, in fact, each
random slope is drawn from its own distribution, while
simultaneously allowing the estimation of popula-

tion parameters of interest. Naturally, there are cases
where an exponential distribution might not reflect the
underlying distribution of “true” rates. However, the
exponential distribution seemed to provide a good fit
for the observed data and allowed us to estimate an
exGaussian-LMM with the same number of param-
eters as a simple Gaussian-LMM. Moreover, when
testing a more general Gamma distribution in prelim-
inary fitting experiments, we found that the shape
parameter converged to a value slightly smaller than
1, making the exponential distribution a good candi-
date for our implementation (a Gamma distribution
with a shape parameter of 1 is a simple exponential).
Another example is provided by a recruitment strategy
for a hypothetical trial which selects participants using
cutoffs on the RoPmeasured in the clinic. We provide a
description of the changes that such a selection would
bring to the “true” distribution of RoPs, assumed
exponential, in the Appendix. The resulting distribu-
tion would be extremely difficult to model exactly in
any practical implementation of the LMM. However,
we also show that, for the typical level of perimetric
variability and a realistic number of tests that would be
available in the clinic (4 to 6), the noise in the observed
RoPs is such that, in practice, the resulting “true”distri-
bution would only deviate minimally from the original
exponential. In other words, such a selection would be
largely ineffective in identifying patients truly progress-
ing at a rate within a desired range. Note that this result
is valid regardless of the distribution assumed for the
“true” RoPs, because it is simply a consequence of the
uncertainty affecting the estimation of the true rates
from the observed rates.

Our approach did not specifically focus onmodeling
the intercepts. Although the overall shape of the distri-
bution is very similar to that of the observed slopes,
the exact distribution of the intercepts is not expected
to be an exGaussian, as explained in the Appendix.
Modeling the expected distribution under a simulated
scenario is relatively straightforward (see Appendix).
However, estimating all the parameters for such a
distribution from clinical data would be challenging
and very likely imprecise. The estimation of a plausi-
ble distribution becomes achievable with some simpli-
fications and assumptions, but, in our analyses, it did
not provide any improvement in fitting the data over
assuming an exGaussian distribution for both inter-
cepts and slopes (based on the WAIC, see Appendix).
It should be noted that various choices of the distri-
bution for the intercept, including a simple Gaussian,
only had a minimal effect on the estimated distribution
of the slopes, the actual parameter of interest.

It should be highlighted that the proposedmodeling
approach would not be restricted to VF progression,

Downloaded from intl.iovs.org on 04/19/2024

https://giovannimontesano.shinyapps.io/Sample_size/


The Distribution of True Visual Field Rates TVST | April 2024 | Vol. 13 | No. 4 | Article 15 | 13

but to any metric the change in which is modeled with
a linear trend over time and the “true” rate of which is
not expected to be positive. This would be the case, for
example, for optical coherence tomography measure-
ments of the circumpapillary retinal nerve fiber layer
or inner retinal macular layer thickness in glaucoma.
This would give the chance to further test the assump-
tions related to the interpretation of the mean of the
Gaussian component, because structural metrics are
not expected to be affected by patients’ learning.

The current implementation of the model does not
allow the estimation of the “true” RoP for each eye.
This is because the individual RoP is modeled as the
sum of a random draw from the estimated exponential
andGaussian distribution. This means that any combi-
nation of two real values drawn from these distribu-
tions and the sum of which is equal to the observed
RoP is equally plausible. Importantly, although itmight
seem plausible to estimate individual learning at least
for a series with clearly positive trends, it should be
noted that such positive slopes can arise simply because
of noise in the absence of learning, as shown in our
simulations in Figure 1. Another limitation of the
current implementation is that the model calculates
the amount of noise based on the “average” level of
test variability, independently of the RoP and level
of damage. This is similar to standard implementa-
tions of hierarchical LMMs22 and facilitates compar-
ison with standard methodology. Individual variability
could be incorporated in the model, for example, by
accounting for the level of damage.34 However, global
indices such asMDare also largely influenced by global
fluctuations in the performance,4,34,35 which are often
subject-dependent. This means that both a systematic
and a subject-level element of variability would need
to be modeled, considerably increasing the complexity
of the model and the number of parameters required.
This will be the objective of future work. However, the
estimated distribution appeared to accurately describe
the observed distribution of RoPs calculated via linear
regression (see Fig. 3).

Our modeling only focused on a global index, the
MD. Although extensions to model pointwise values
are relatively straightforward for Gaussian-LMMs,22
they pose significant challenges when implementing
larger hierarchical structures for more complex distri-
butions, such as in exGaussian-LMMs. Further exten-
sion of the model will focus on modeling an additional
level in the hierarchy, for example, by modeling the
RoP at each location and VF cluster.22,27,28 This
is important for RCTs, because pointwise model-
ing has been beneficial in some retrospective analy-
ses of trial data to highlight subtle differences27,29
in progression. However, a better characterization of

fast progressors with the exGaussian-LMMs based on
MD might prove sufficient to overcome the limita-
tions of commonly used Gaussian-LMMs and provide
similar power to pointwise LMMs. Other methods of
analyzing RCT data, such as those based on machine
learning,43–45 might also provide additional statistical
power. However, such empirical techniques have the
disadvantage of providing results that are often not
directly interpretable. In contrast, our methodology
was designed to provide estimates for parameters that
had a clear interpretation in terms of disease progres-
sion, measurement noise and learning artifact, making
it valuable in elucidating the actual impact on disease
modification and hopefully improve translation of the
results across different studies and datasets.

Finally, the translational effort of the current work
focuses on exploiting our results to optimize the design
of trials based on standard LMMs. Naturally, the
exGaussian-LMM itself could be used for trials to
estimate the change in the “true” RoP due to treat-
ment. Although this could be easily implemented for
individual trials, sample size calculations would be
complicated due to the complex and time-consuming
procedure required to estimate the parameters of
the exGaussian-LMM. This is mainly because of the
relatively complex, but fully interpretable, structure of
the model to separate the parameters of the exponen-
tial and Gaussian component of the distribution.
Defining approximate solution for power calculations
with the proposed model will be the objective of future
work.
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Appendix

Bayesian Hierarchical Modeling

The Bayesian hierarchical LMMs were fitted by
runningMarkovChainMonte Carlo (MCMC) simula-
tions in JAGS.24 The LMMsmodelled a linear relation-
ship of MD over time. There were two levels in the
hierarchy, the population level and the subject level.
The hierarchical LMM modelled individual progres-
sion by using random intercepts and slopes. We will
describe the implementation of the standard Gaussian
LMM and then explain how this was modified to use
an exGaussian distribution for the random effects on
the individual slopes.

The Gaussian-LMM estimates four population
parameters for two Gaussian distributions of the
random effects, that is, the mean and SD for
the distribution of the intercepts (μ0 and σ 0) and
the slopes (μ1 and σ 1). The individual intercepts and
slopes where random draws from theseGaussian distri-
butions. The residuals error of the predicted MD
had a Gaussian distribution with mean 0 and SD σ e
(the residual SE). Note that, in standard LMMs, the
random intercepts and slopes are usually modeled as
a joint bivariate Gaussian distribution, to model the
correlation between intercepts and slopes. We chose to
instead model independent Gaussian distributions for
the random effects to allow a direct comparison with
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the exGaussian-LMM, where the joint modeling is not
easily implemented.

The exGaussian-LMM had a similar structure to
theGaussian-LMM.The difference was in the distribu-
tion of the random effects, which followed an exGaus-
sian distribution. In this case, the random intercepts
and slopes were considered to be the sum of a random
draw from a negative exponential distribution and
a Gaussian distribution (the noise component). The
model estimated two population-level parameters for
the exGaussian distribution, the parameter λ for the
exponential distribution and the mean (μn) of the
Gaussian noise component. The SD σ n of the noise
was calculated as the SE of the intercept (σ 2

β̂0
) and slope

(σ 2
β̂1
) defined as below (t indicates the time vector, n is

the number of VF tests):

σ 2
β̂0

= σ 2
e

[
1
n

+ t̄2∑n
i=1

(
ti − t̄

)2
]

σ 2
β̂1

= σ 2
e∑n

i=1
(
ti − t̄

)2
Note that each random intercept and slope was

the sum of two draws from two independent random
processes. This means that, although it is possible to
estimate the population level parameter for the “true”
exponential distribution, it is impossible to calculate
the “true” rate of each subject, because there are
infinite combinations of two values from the two distri-
butions that can sum to give the same observed slope.
One limitation of this method is that it estimates
the overall σ e rather than estimating the SE for each
subject. This also means that the method assumes all
subjects to have the same “average” level of variabil-
ity. Although this is a common assumption in LMMs,
it might not be reflective of the data.25 However, our
results show that such an approximation does not have
a large impact on the accuracy of our estimates (see
Fig. 6). The model could be further expanded, in the
future, to account for changes in variability due to
the level of damage or individual variations, if this is
required for specific contexts.

The prior distributions for the mean of the random
effects of the Gaussian-LMM were normal distribu-
tions, with mean = 0 and SD = 100 for the intercepts
and SD= 10 for the slopes (units are in dB and dB/year,
respectively). The prior distributions for the variances
of the random effects were both set as weakly infor-
mative Inverse-Gamma with shape and rate parame-
ters equal to 0.001. Two parallel MCMC chains were
run for 10,000 iterations, with 5000 additional burn-

in iterations. The Gelman-Rubin index was assessed to
ensure convergence (GR < 1.2).46

The prior distributions in the exGaussian-LMM
were set as partially informative for the main calcula-
tions. The prior distribution for the parameter λ was
a Gamma distribution with shape 1 and rate 1/̂λ. The
value of λ̂was calculated using themethod of moments
for the exGaussian distribution47 from the empirical
values of intercepts and slopes obtained through linear
regression. This Gamma prior has mean = λ̂ and
variance = 1/̂λ2. Note that whereas the method of
moments can be used to estimate the parameters of an
exGaussian distribution and can provide useful prior
information, it would fail to establish a link between the
observed values and the underlying generating random
process, especially for the RoP. The fitting procedure
was identical to the Gaussian-LMM.

We used theWAIC to compare the twomodels. This
was calculated by monitoring the log-likelihood of the
observations during the fitting process for the MCMC
draws. These values were later used to calculate the
WAIC (and its SE) for the Gaussian and exGaussian-
LMM using the loo package for R.30 The package
also provides the SE for the difference in WAIC (lower
WAIC indicates a preferrable model). As previously
explained, because the WAIC can be influenced by the
choice of priors, we compared the Gaussian-LMM to
an exGaussian-LMMfitted with similarly weakly infor-
mative priors. Specifically, the prior distribution for the
parameter λ was a Gamma with shape and rate 0.001
(the same as the distribution for the inverse variance of
the random effects in the Gaussian-LMM).

Modeling the Distribution of the Intercepts

As explained in the Methods section, the “true”
distribution of the intercepts, assuming an exponential
distribution of the RoPs prior to the first test, is the
product of the exponential distribution of RoPs and
the time interval between the development of glaucoma
and the first VF test. The time interval can potentially
have any strictly positive distribution. The Gamma is
a positive distribution with two parameters (shape and
rate) that would offer sufficient flexibility to model a
variety of scenarios. Note that the exponential distri-
bution is a special case of Gamma distribution with
shape = 1. The PDF of the product of two Gamma
distributed random variables (or a Gamma and an
exponential) has the analytical expression reported in
the last paragraph of this Appendix. In the example
below, we sampled from an exponential with rate λ =
1.12 and a Gamma with shape 2 and rate 0.34 (which
corresponds to an average time interval of 6 years).
The product distribution is still single-tailed and can
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Observed intercept True intercept

−30 −20 −10 0 −30 −20 −10 0
Baseline Mean Deviation (dB)

Assumed 'true' distribution Correct (product) Exponential

Figure A1. Distribution of intercepts from simulated test series, assuming an exponential distribution for the “true” rates of progression
and a Gamma distribution for the interval between the insurgence of glaucoma and the first test.

−30 −20 −10 0
Baseline intercept MD (dB)

A

−3 −2 −1 0 1
Rate of Progression (dB/year)

B

Figure A2. Fitting results for the intercept (A) and slope (B) using a linear mixed model using an exponential distribution for the “true”
slope and an exponential-gamma product for the “true” intercept.

be approximated with an exponential with mean equal
to the product of the means of the two distributions
(the mean for the exponential distribution is 1/λ). The
correct distribution has, however, a faster decaying tail
(Fig. A1), which is consistent with the distribution
observed for the empirical intercepts in our dataset (see
Fig. 3).

The parameters for the product distribution can
be estimated with a hierarchical LMM similar to the
others in this study by making the simplifying assump-
tion that the time to detection is also described by
an exponential distribution (i.e. by setting the shape
parameters of the Gamma distribution to 1) and that
the distribution of the “true” RoPs before the baseline
test is the same as the one estimated from the follow-

up. Note that this is unlikely to be true because patients
would be managed to reduce their RoP during follow-
up. This approach models the distribution of the inter-
cept as the sum of a Gaussian distribution and a
product of two exponential distributions. The results
are presented in Figure A2. However, the WAIC with
this model was not better than the full exGaussian-
LMM (192197.5 [725.7]).

Statistical Comparison of Parameter
Estimates

The Bayesian P value was calculated according
to Makowski et al.32 The median of the posterior
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Figure A3. Distribution of the “true” rate of progression (RoP) of subsets of patients selected with cutoffs on their observed RoP, with
various numbers of pre-trial visual field tests (VFs), performed every 6 months. The original distribution of “true” rates is exponential (blue).
The distribution for the selected subset is in red. The histograms and scatterplots are generated with simulated data. The distribution for the
selected subset is calculated as explained in the last paragraph of this Appendix.

distribution is determined from the MCMC draws.
According to whether the median is above or below
0, the proportion of MCMC draws above or below
0 is the P-direction, respectively. The P-direction can
have values between 0.5 (distribution centered on 0)
and 1. The Bayesian P value statistic can then be
calculated as p = 2 * (1–P-direction) 32 and has
a similar interpretation to a two-tailed frequentist
P value.

Effect of Selective Sampling

Trial patients can be selected based on their
observed RoP in the clinic prior to recruitment. This
wouldmodify the expected exponential distribution for
the “true” RoPs. This situation can be easily simulated
by selectively rejecting observed RoPs above or below
a desired cutoff. A simple analytical expression for the
resulting distribution does not exist. However, it can
be very efficiently evaluated numerically. For a single
cutoff, for example, to select people with an observed
RoPs more negative than −0.5 dB/year, the unscaled

PDF can be obtained by multiplying the PDF of the
exponential distribution of “true” RoPs by the CDF
of a Gaussian distribution with mean −0.5 dB/year
and SD equal to the average SE of the slopes measured
from clinically collected data. The resulting curve needs
to be normalized so that it integrates to 1 to obtain
a valid PDF. Simulated examples are shown in Figure
A3. It is useful to evaluate the practical impact of such
a selection. Assuming an interval between tests of 6
months and an average σ 2

e = 3.87 dB, we can estimate
the values of σβ̂1

for the RoPs estimated from the last
4, 5, or 6 tests prior to recruitment. These values are
1.76 dB/year, 1.24 dB/year, and 0.94 dB/year, respec-
tively. The result of selecting patients with an observed
RoP between −0.5 dB/year and −1 dB/year are shown
in Figure A3. Because of the large variability of the
observed slopes for the number of tests that would
likely be available from the clinic in most patients, the
selection has little effect on the distribution of “true”
rates. A much higher precision and stronger selection
criteria would be required to meaningfully affect their
distribution (see Fig. A3).
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Relevant Formulas

ExGaussian Distribution
Probability distribution function (PDF):

f (x|λ, μ, σ ) = λ

2
e

λ
2 (2μ+λσ 2−2x)�

(
x − μ + λσ 2

σ

)
Cumulative distribution function (CDF):

F (x|λ, μ, σ ) = �

(
x − μ

σ

)
− �

(
x − μ + λσ 2

σ

)

× e

(
(μ+λσ2 )

2−μ2−2xλσ2

2σ2

)
Where � indicates the CDF of a standard Gaussian
distribution. λ indicates the rate of the exponential
component. μ and σ indicate the mean and standard
deviation of the Gaussian component. The PDF of the
exGaussian distribution is obtained as the convolution
of the Gaussian PDF

f (x|μ, σ ) = e− 1
2 ( x−μ

σ )2

σ
√
2π

and the Exponential PDF

f (x|λ) = λe−λx.

Product of Gamma and Exponential
This models the distribution of “true” intercepts

(baselineMD) assuming an exponential distribution of
RoPs prior to the first test, a Gamma distributed inter-
val between the development of glaucoma and first test
and that all subjects have an MD = 0 dB before devel-
oping glaucoma.

f (x|α, β1, β2) =
2
(

x
β1∗β2

)( α+1
2 )

BesselK
(
2
√

x
β1∗β2

, α − 1
)

� (α) x
β1 and β2 are the inverse of the rates for the exponen-
tial and the Gamma distribution, α is the shape param-

eter of the Gamma distribution. BesselK indicates a
Bessel function of the second kind. These functions
can be complex to calculate, but are implemented
in most languages, including base R. The effect of
perimetric noise and intersubject variability of MDcan
be modelled with a Gaussian distribution. Similarly
to the modeling of the slope, the distribution for
the observed intercepts can be obtained by convolv-
ing the “true” distribution of the intercepts with
this Gaussian distribution. In the case of a simple
exponential, the result is an exGaussian. The convo-
lution with the PDF reported above has no close
form solution and can be obtained via numerical
convolution.

Effect of Patient Selection
The unscaled PDF of the “true” rates after selecting

patients with an observed rate below a certain thresh-
old c, with an estimated standard error for the observed
rates σβ̂1

, is:

f (x|λ, c, σβ̂1
) = λe−λx

(
1 − �

(
x − c

σβ̂1

))
The opposite selection (i.e. patients with an

observed rate above a certain threshold c) can be
calculated as:

fu(x|λ, c, σβ̂1
) = λe−λx�

(
x − c

σβ̂1

)
These unscaled PDFs need to be normalized to

integrate to unity to represent a valid PDF. This can be
achieved numerically by calculating the normalization
factor as integral of the unscaled PDF:

f (x|λ, c, σβ̂1
) = fu(x|λ, c, σβ̂1

)
∫∞

−∞ fu(x|λ, c, σβ̂1
)dx

Note that the selection can be applied recursively to
select patients within a certain interval.
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