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Purpose: The assessment of retinal image (RI) quality holds significant importance
in both clinical trials and large datasets, because suboptimal images can potentially
conceal early signs of diseases, thereby resulting in inaccurate medical diagnoses. This
study aims to develop an automatic method for Retinal Image Quality Assessment
(RIQA) that incorporates visual explanations, aiming to comprehensively evaluate the
quality of retinal fundus images (RIs).

Methods: We developed an automatic RIQA system, named Swin-MCSFNet, utiliz-
ing 28,792 RIs from the EyeQ dataset, as well as 2000 images from the EyePACS
dataset and an additional 1,000 images from the OIA-ODIR dataset. After preprocess-
ing, including cropping black regions, data augmentation, and normalization, a Swin-
MCSFNet classifier based on the Swin-Transformer for multiple color-space fusion was
proposed tograde thequality of RIs. Thegeneralizability of Swin-MCSFNetwas validated
across multiple data centers. Additionally, for enhanced interpretability, a Score-CAM–
generated heatmap was applied to provide visual explanations.

Results: Experimental results reveal that the proposed Swin-MCSFNet achieves promis-
ing performance, yielding a micro-receiver operating characteristic (ROC) of 0.93 and
ROC scores of 0.96, 0.81, and 0.96 for the “Good,” “Usable,” and “Reject” categories,
respectively. These scores underscore the accuracy of RIQA based on Swin-MCSF in
distinguishing among the three categories. Furthermore, heatmaps generated across
different RIQA classification scores and various color spaces suggest that regions in
the retinal images from multiple color spaces contribute significantly to the decision-
making process of the Swin-MCSFNet classifier.

Conclusions: Our study demonstrates that the proposed Swin-MCSFNet outperforms
other methods in experiments conducted on multiple datasets, as evidenced by the
superior performance metrics and insightful Score-CAM heatmaps.

Translational Relevance: This study constructs a new retinal image quality evaluation
system, which will contribute to the subsequent research of retinal images.

Introduction

Retinal image analysis is critical for identifying and
classifying various retinal diseases, including diabetic

retinopathy (DR), age-related macular degeneration
(AMD), retinoblastoma, hypertensive retinopathy, and
retinitis pigmentosa. The automated identification of
fundus diseases from retinal images represents a crucial
stride toward early diagnosis and the prevention of

Copyright 2024 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded from intl.iovs.org on 04/19/2024

mailto:linnanqia@126.com
mailto:tiant55@mail.sysu.edu.cn
https://doi.org/10.1167/tvst.13.4.8
http://creativecommons.org/licenses/by-nc-nd/4.0/


Retinal Fundus Image Quality Assessment TVST | April 2024 | Vol. 13 | No. 4 | Article 8 | 2

disease progression.1 Retinal image quality assess-
ment (RIQA) emerges as a pivotal prerequisite for
diagnosing retinal diseases, aiming to present clear
depictions of anatomical structures and lesions that
are of utmost concern to ophthalmologists, while
concurrently excluding poor-quality retinal images.2
The noninvasive and cost-effective nature of retinal
image acquisition on a large scale underscores its signif-
icance.3,4 However, the quality of some retinal images
is compromised because of low contrast, blurring,
and focusing errors, potentially obscuring early disease
signs and leading to unreliable medical diagnoses.5
A study based on UK Biobank6 reported that 26%
of retinal images lacked adequate quality, hindering
accurate diagnoses. Another study indicated that 10%
and 20.8% of images with dilated and nondilated
pupils, respectively, were unsuitable for Automatic
Retinal Screening Systems.7 Approximately 10% to
15% of retinal images are rejected because of poor
image quality.8 Consequently, RIQA is indispensable
to circumvent the need for image recapture and ensure
sufficient quality for reliable diagnoses.

In recent years, various methods have been
proposed for retinal image quality classification.
Although some approaches, such as those by Dias et
al.,9 Lee et al.,10 and Abdel-Hamid et al.,11 rely on
hand-crafted features and lack generalization ability,
deep learning (DL) for feature learning has emerged
as a robust alternative. This approach unveils latent
feature information, enabling the construction of end-
to-end models for tasks with heightened robustness
and accuracy.12,13 Over the past decade, Convolutional
Neural Networks (CNNs) have demonstrated remark-
able success in the classification of retinal images.14
For instance, Zago et al.15 proposed a CNN pretrained
on nonmedical data, evaluating its performance on
publicly available databases (DRIMDB and ELSA-
Brasil). FengLi et al.16 introduced a method that
combines saliency maps and CNN features, subse-
quently feeding them into a support vector machine
for automated detection of retinal fundus images of
varying quality. Sun et al.17 applied two fine-tuned
CNN architectures, achieving an impressive accuracy
of 97.12%. Despite the achievements of CNNs, visual
transformers have shown superior capabilities in
capturing spatial relationships compared to CNNs.
Transformer networks, including initial and visual
transformers based on self-attention mechanisms,18
have been proposed to grade retinal fundus images
with RGB,19,20 owing to their capacity to capture
long-distance dependencies.

The representation of colors in retinal fundus
images through color spaces such as RGB, CIELAB,
and HSV, obtained via nonlinear conversions from the

RGB color space, is a critical aspect. However, certain
existing RIQA methods based on initial transform-
ers and visual transformers need refinement to accom-
modate retinal fundus images with multiple color
spaces. This is attributed to their exclusive focus on
RGB, overlooking other color spaces and impeding
the extraction of diverse visual features. Our choice
of the Swin Transformer as the backbone network
stems from its enhanced speed, specialized architec-
ture, efficient Winograd convolutions, and the ability
to preserve spatial relationships, thereby enabling more
accurate image classification.

Furthermore, visualization techniques, including
Class Activation Map (CAM),21 Grad-CAM,22 Grad-
CAM++,23 Score-CAM,24 and Layer-CAM,25 and
more, have enabled us to visualize the predicted class
scores and discerning object parts detected by CNNs.
The novel post-hoc visual explanation method, Score-
CAM, addresses issues such as gradient saturation,
disappearance, and noise, ensuring accurate visualiza-
tion. It overcomes challenges posed by channels with
heavy weights in CAM and Grad-CAM, contribut-
ing disproportionately to category prediction scores.
Furthermore, it addresses the limitations of CAM
and Grad-CAM by considering the impact of forward
prediction on backpropagation gradients.

This study delves into the analysis of different color
spaces’ impact on retinal images in RIQA tasks. We
propose Swin-MCSFNet, a multicolor space fusion
method based on the Swin Transformer, to integrate
representations from various color spaces. Addition-
ally, we validate our approach through multi-center
assessments using external datasets, OIA-ODIR, and
EyePACS. For enhanced visual interpretation, we use
the visualization technology Score-CAM.

Material and Methods

The comprehensive workflow is illustrated in
Figure 1 and is detailed in the subsequent subsec-
tions.

Dataset

Retinal fundus images frommultiple centers, includ-
ing EyePACS, Eye-Quality (EyeQ), and OIA-ODIR,
were collected in our study. EyePACS, a versatile
telemedicine system dedicated to diabetic retinopa-
thy screening, has collected five million retinal images
frommore than 750,000 screened patients.26 The EyeQ
Assessment Dataset, a re-annotation subset of the
EyePACS dataset, is specifically curated for RIQA.3
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Figure 1. The entire workflow of the proposed Swin-MCSFNet.

The inherent heterogeneity in image characteristics
across multiple centers can be ascribed to the use of
more than one camera model and various types of
cameras. This diversity introduces variations in resolu-
tions, fields-of-view, hues, retinal image centers, pupil
diameters, and other relevant factors.

Some previous studies27–29 have demonstrated a
considerable number of retinal fundus images, previ-
ously deemed suboptimal (21%) by certain two-level
RIQA systems (categorizing images as “good” or
“bad”), could still offer valuable interpretability for
clinicians.30 To address this issue, EyeQ dataset and Fu
et al.3 proposed a three-level RIQA system respectively.
In our study, considering the quality of the collected
retinal fundus images, we opted for the adoption
of a three-level RIQA system. This system, named
Swin-MCSFNet, uses a Swin-Transformer for multi-
ple color-space fusion, deviating from the conventional
two-level RIQA system to enhance clinical relevance.
Our three-level RIQA system is defined as follows:
“Good” quality denotes retinal images devoid of low-
quality factors, displaying all retinopathy characteris-
tics clearly. “Usable” quality includes retinal images
with slight low-quality indicators, where main struc-
tures and lesions are still clearly identifiable by the
graders. In instances of uneven illumination, where
the readable region of the retinal image exceeds 80%,
these images are considered “Usable.” “Reject” grade
is assigned to images with severe issues preventing a

full and reliable diagnosis, even by ophthalmologists,
including those with an invisible disc or macula region.

Therefore the retinal fundus images gathered from
the EyeQ dataset in our study underwent grading,
classifying them into “good,” “usable,” and “reject”
categories. Within this classification, 12,543 images
were assigned to the training dataset, 4234 to the
validation dataset, and 12,015 to the testing dataset
(refer to Table 1). Additionally, in accordance with
the quality grading system of the EyeQ dataset,
1000 retinal fundus images from the OIA-ODIR
and 2000 selected images from the EyePACS dataset
were systematically categorized into the same three-
level quality grading system. This categorization was
validated using the EyeQ dataset, OIA-ODIR datasets
by three specialized retinal care graders at the First
People’s Hospital of Yun Nan Province.

Preprocessing on the Dataset

Cropping the Black Regions From the Images
To ensure the uniformity of network input and

eliminate irrelevant information, we conducted prepro-
cessing on the obtained images, specifically by cropping
the black regions of the retinal fundus images, which
were surrounded by black margins. Subsequently, the
images were resized to 256 × 256 pixels. Figure 2 illus-
trates a sample from EyePACS, depicting the image
before and after the removal of borders.
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Table 1. A Description of Each Dataset

Dataset Total Training Set Validation Set Test Set

EyeQ 28,792 12,543 (Good: 8347, Usable:
1876, Reject: 2320)

4234 12,015 (Good: 6277, Usable:
3390, Reject: 2348)

OIA-ODIR 1000 — — 1000 (Good: 538, Usable: 280,
Reject: 182)

EyePACS 2000 — — 2000 (Good: 620, Usable: 1146,
Reject: 234)

Figure 2. Sample image from EyePACS before and after cropping, (a) one sample image with black margins, (b) cropped and centered
image.

Data Augmentation
The application of data augmentation on the origi-

nal data has been demonstrated to enhance diagnos-
tic accuracy in previous studies.31–34 In our study, two
types of augmentation were used:

1. Randomly inverting images vertically and
horizontally with a probability of 0.5

2. Performing affine transformations through
rotation with random angles ranging from −180°
to 180°.

It is important to note that data augmentation was
not applied to the testing dataset to ensure the validity
of the evaluation results.

Normalization
Before inputting images from all used datasets into

the deep learning network, a normalization process
was implemented. This involved calculating the global
mean and standard deviation (SD) of pixel values
across all training images.

Swin-MCSFNet Classifier: Image Quality
Classifier Based on Swin Transformer for
Multiple Color-Space Fusion

In our study, we introduced the Swin-transformer-
based Multiple Color-space Fusion network (Swin-
MCSFNet) to integrate representations from various
color spaces. The architecture of the proposed Swin-
MCSFNet classifier is illustrated in Figure 3.

The original RGB retinal fundus image under-
went color image segmentation, using the HSV and
LAB color spaces.35 Subsequently, a two-dimensional
convolution patch partition module was used to
segment the images into non-overlapping patches
of size 4× 4. This resulted in a feature dimen-
sion of 4× 4× 3 for each patch. The patches were
then flattened in the channel dimension, producing
a (H4 × W

4 ) × 48 two-dimensional sequence. A Linear
Embedding layer was used to map the tensor with
dimensions (H4 × W

4 ) × 48 to a dimension “C” (set
to 96), yielding the resultant patch tokens. These
tokens were then input into the Base Networks,
where image features were generated through the
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Figure 3. The archicture of the Swin-MCSFNet classifier.

use of the Swin-S transformer on patch tokens. The
architecture of the Swin-S transformer is depicted
in Figure 4a. Multiple successive Swin Transformer
Blocks withW-MSA and SW-MSA head self-attention
modules (Fig. 4b) were applied to these patch
tokens.

Furthermore, the two-level fusion block was
developed, encompassing prediction-level fusion
and feature-level fusion: (1) The feature maps from
the Base Networks and different color spaces were
merged and fed into a fully connected layer to
generate prediction-level fusion. (2) Considering
the significance of detailed information for shallow
networks, the patch partition module and linear
embedding were used to partition patch tokens
acquired from different color spaces. These tokens
were then input into the adaptive average pooling
layer, followed by flattening and direct feeding into
the fully-connected layer for feature-level fusion.
Ultimately, the final prediction-level fusion was
achieved by combining the outputs of the two-
level fusion block and feeding them into the fully
connected layer. This two-level fusion block ensured
comprehensive use of information from different

color spaces, thereby enhancing the overall system’s
accuracy.

In addition, the proposed Swin-MCSFNet retained
the loss function of all three networks and shallow
networks through the multi-branch fusion network,
combined with the fusion loss as:

Losstotal =
3∑

i=1

wiLossi + wfLoss f + wpLossp (1)

where, wi, wf and wf were tradeoff weights, which were
set as wi= 0.1, wf = 0.1 , and wf = 0.63.To empha-
size the final prediction fusion layer, wp is to 0.6. Lossi,
Lossf and Losspwere the multiclass cross entropy loss
functions of the three base networks and two fusion
layers, respectively.

Quality Inspection of Retinal Images with
Multiple Color Spaces Using Score-CAM

Score-CAM was introduced to conduct quality
inspections of fundus color photos in multiple color
spaces, with the aim of achieving a qualitative
analysis of various attention modules (see Fig. 5).
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Figure 4. (a) The architecture of a Swin transformer (Swin-S), (b) Multiple successive Swin Transformer Blockwithmulti-head self-attention
modules.

Figure 5. Use Score-CAM to visualize different stages of Swin-s on retinal images.

Furthermore, it is crucial to determine the specific
areas of the pre-processed retinal fundus images
from which the network is learning, focusing on
relevant information rather than irrelevant details
for classification. The heatmaps generated by Score-
CAM serve the purpose of aiding in the accurate
interpretation of CNN predictions with reduced
noise.

Experiments

Experimental Setting
We used 12,543 retinal fundus images from the

EyeQ dataset as training data, and 12,015 retinal
fundus images from the same dataset were used as
testing data. To assess the generalization capability of
our proposed system, Swin-MCSFNet, 4234 images
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from the EyeQ dataset, along with 2000 pictures from
EyePACS and 2000 pictures from OIA-ODIR, were
adopted. For a multicenter comparison, we evalu-
ated the proposed Swin-MCSFNet by leveraging two
state-of-the-art networks: Swin-S36 and DenseNet121-
MCS.3 To assess the impact of the network’s color
space, we compared Swin-MCSFNet for each base
network. The implementation of the multi-branch
fusion classification network for RIQA based on Swin-
MCSFNet was conducted using PyTorch. The param-
eters were set with a batch size of four, a learning rate
of 0.01, an epoch of 100, stochastic gradient descent
as the optimizer, and a multi-class cross-entropy loss
function as the loss function. All experiments were
conducted on a Hygon C86 3185 eight-core processor
machine with 65G RAM, equipped with an NVIDIA
GeForce RTX 3090 GPU (VRAM: 24G). The train-
ing of our model on the EyeQ dataset took approxi-
mately nine hours, and testing was completed within
five minutes.

The loss function was calculated as follows:

Loss (yi, pi) = −
∑C

i=1
yilog (pi)

whereC is the number of classes. yi denoted the one hot
value representation of the label, pi denoted the proba-
bility of the ith class.

We evaluated Swin-MCSFNet by employingmetrics
such as accuracy, precision, recall, and F1-score.
Finally, our study used a heatmap to visually represent
the performance and efficiency of the proposed RIQA
based on Swin-MCSFNet. This visualization enabled
us to compare the performance of different compo-
nents or configurations and identify potential issues or
areas for improvement.

Results

The performance of RIQA using three differ-
ent methods on retinal fundus images with multiple
color spaces is summarized in Tables 2 through 4.

The results, encompassing metric accuracy, preci-
sion, and F1-score, highlight the superior perfor-
mance of the proposed method (Swin-MCSFNet)
across multiple centers compared to the other two
methods. Figure 6 presents the ROC curves and
confusion matrix of the three methods on the
EyeQ testing dataset. The evaluation of classifying
retinal fundus images into “Good,” “Usable,” and
“Bad” categories demonstrates the effectiveness of the
proposed Swin-MCSFNet RIQA method. Notably,
Swin-MCSFNet achieved ROC scores of 0.96, 0.81,
and 0.96 in the “Good,” “Usable,” and “Rejected”
categories, respectively, with a micro ROC score of
0.93. These results underscore the enhanced perfor-
mance of Swin-MCSFNet in distinguishing among
the three categories, as evidenced by the ROC curves.
The binary classification results between different
models are shown in the supplementary materi-
als. Figures 6 and 7 offer deeper insights into
the classification process through the inclusion of
confusion matrices and heatmap visualizations. The
network’s focal points are evident, primarily center-
ing on the optic cup and disc for both “Good” and
“Usable” retinal images. Conversely, retinal fundus
images categorized as “Reject” demonstrate distinc-
tive characteristics arising from issues such as dim
lighting, poor contrast, and haziness. It is notewor-
thy that Figure 7 illustrates only two representative
types of “Reject” images. The Score-CAM heatmap
of these poor-quality retinal fundus images promi-
nently exhibits a red hue, signifying a concentration
of overall information in specific areas. This under-
scores the network’s emphasis on critical regions, even
in poor-quality images. Figure 8 enhances our under-
standing of heatmap visualizations across different
color spaces. Specifically, the RGB image consistently
emphasizes areas surrounding the optic cup and disc.
In contrast, the HSV and LAB color spaces prior-
itize color intensity. Particularly noteworthy is the
LAB image’s heatmap, which exhibits a comprehensive
focus on the entire image, encompassing even blood
vessels.

Table 2. Performance Comparison of RIQA Using Different Methods on the EyeQ Training Dataset

Network Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% CI)

Swin-S 0.8033
(0.7962, 0.8104)

0.7659
(0.7583, 0.7734)

0.7706
(0.7631, 0.7781)

0.7633
(0.7557, 0.7709)

DenseNet121-MCS 0.8529
(0.8488, 0.8569)

0.7409
(0.7339, 0.7480)

0.7606
(0.7545, 0.7673)

0.7340
(0.7273, 0.7410)

Ours 0.8770
(0.8729, 0.8806)

0.7919
(0.7845, 0.7985)

0.7658
(0.7585, 0.7721)

0.7764
(0.7689, 0.7827)

CI, confidence interval. Bold values indicate the model with the best performance in each indicator.
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Table 3. Performance Comparison of RIQA Using Different Methods on the OIA-ODIR Dataset

Network Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% CI)

Swin-S 0.7070
(0.7900, 0.8200)

0.6563
(0.6319, 0.6835)

0.6674
(0.6452,0.6915)

0.6532
(0.6294, 0.6780)

DenseNet121-MCS 0.7320
(0.7156, 0.7478)

0.5695
(0.5474, 0.5935)

0.6038
(0.5793,0.6300)

0.5600
(0.5358, 0.5852)

Ours 0.7980
(0.7833, 0.8122)

0.6385
(0.6122, 0.6615)

0.6645
(0.6375,0.6861)

0.6439
(0.6175, 0.6673)

CI, confidence interval. Bold values indicate the model with the best performance in each indicator.

Table 4. Performance Comparison of Three Methods on the EyePACS Dataset

Network Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% CI)

Swin-S 0.5655
(0.5438, 0.5872)

0.5596
(0.5379, 0.5814)

0.6167
(0.5954, 0.6380)

0.5653
(0.5435, 0.5870)

DenseNet121-MCS 0.6520
(0.6406, 0.6639)

0.4767
(0.4586, 0.4949)

0.5744
(0.5562, 0.5916)

0.4709
(0.4525, 0.4899)

Ours 0.7487
(0.7372, 0.7589)

0.6162
(0.5969, 0.6355)

0.6635
(0.6433,0.6817)

0.6271
(0.6080, 0.6447)

CI, confidence interval. Bold values indicate the model with the best performance in each indicator.

Discussion

In this article, we presented the Swin-MCSFNet
classifier, an effective RIQA system based on the
Swin transformer. Swin-MCSFNet classifier is specif-
ically designed for the precise classification of retinal
images across multiple color spaces into three distinct
grades. To validate the efficacy of the proposed Swin-
MCSFNet classifier, comprehensive assessments were
conducted across various centers. The justification for
its performance was established using Score-CAM, a
method used to identify the most critical areas in the
images for evaluating image quality.

Certain retinal images acquired from the EyePACS
or EyeQ dataset, initially classified as Reject quality
by the implemented RIQA system, are reclassified
as having Usable quality by our proposed Swin-
MCSFNet classifier. The observed disparity in classi-
fication can be linked to issues such as uneven or
inadequate illumination, which may result from the
absence of pharmacological mydriasis or irregular
operational procedures. This issue is also present in
on-site eye disease screening in rural areas among
community residents and college students. Figure 5
demonstrated that a considerable amount of useful
information can still be extracted from retinal images
of Good and Usable grades. Therefore it is essen-
tial to maximize the use of such images when
available.

The study investigated the performance of three
state-of-the-art RIQA classifiers, all of which yielded
impressive results. As illustrated in Tables 2 through 4,
the classifier built on the Swin-MCSFNet demon-
strated a slight superiority over the others, as evidenced
by higher accuracy, precision, F1 score, micro-ROC,
and ROC scores metrics. In comparison to the classi-
fier relying on the Swin-S transformer36 for images
with a single color space, Swin-MCSFNet exhibited the
ability to use information from each color space, effec-
tively capturing subtle differences among diverse image
types and thereby enhancing prediction accuracy. A
noteworthy advantage of Swin-MCSFNet over the
DenseNet121-MCS-based classifier3 lies in its capac-
ity to simultaneously capture both global and local
information, leading to improved generalization ability.
Furthermore, the Swin-MCSFNet classifier offers a
significant computational efficiency advantage over the
DenseNet121-based classifier, enabling faster inference
and training processes.

DL models exhibit a black-box architecture, posing
challenges to comprehensively explore their function-
ality.37 Consequently, explainable artificial intelligence
models have been proposed to strike a balance
between explainability and accuracy in black-box
neural networks. This approach enables a deeper
understanding and unveiling of the black-box behavior
inherent in deep neural networks. Visualization tools,
such as Score-CAM—an integral part of explainable
artificial intelligence—have been developed to generate
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Figure 6. Comparison of ROC curve and confusion matrix of three methods on the EyeQ Dataset. (a1–a2): the proposed Swin-MCSFNet;
(b1–b2): DenseNet121-MCS; (c1–c2): Swin-S

heatmaps. These heatmaps assist clinicians in quickly
identifying areas that may warrant further evaluation
or improvement. In our study, we used heatmaps across
different RIQA classification scores (see Fig. 7) and
across various color spaces (see Fig. 8). The analy-
sis revealed that specific regions in the retinal images
with multiple color spaces predominantly influenced
the decision-making process of the Swin-MCSFNet
classifier. This not only aids in evaluating the model’s
performance and understanding the decision-making
process during image classification but also stream-
lines the quality assessment procedure. Moreover, it
reduces the risk of overlooking subtle changes that
might be crucial for determining the overall image
quality.

Furthermore, the proposed Swin-MCSFNet classi-
fier underwent successful validation across multiple
data centers, as illustrated in Tables 2 through 4
and Figure 6. This validation serves as additional
confirmation of the accuracy and reliability of the
Swin-MCSFNet classifier in diverse contexts. It
suggests that the proposed Swin-MCSFNet classi-
fier is a valuable tool for both inexperienced and

experienced medical professionals, enabling them to
detect and grade the quality of retinal fundus images
with heightened accuracy and efficiency. Addition-
ally, our proposed classifier exhibits the capability
to monitor treatment progress and identify subtle
changes throughout the course of treatment. This
feature contributes to earlier and more accurate
diagnoses of eye diseases, facilitating faster treatments
and improving outcomes for affected individuals,
potentially enhancing their quality of life. Ultimately,
the proposed classifier can serve as a potent tool
for automating retinal screening processes. This has
the potential to alleviate the workload on healthcare
professionals, leading to increased efficiency in the
diagnosis of retinal diseases.

One limitation of this study is the observed imbal-
ance in sample distribution within the EyeQ dataset,
as indicated in Table 1. To mitigate this issue in future
research, techniques such as image enhancement or
degradation could be used. Additionally, Figure 6 illus-
trates that the accuracy of grading in the Usable
category was not notably high. This discrepancy might
be attributed to the insufficient precision of the RIQA
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Figure 7. Heat map visualization across different RIQA classification.

Figure 8. Heat map visualization across different color spaces.

in the EyeQdata, hindering accurate gradingwithin the
Usable categories.

Conclusions

In conclusion, our study demonstrates that the
proposed Swin-MCSFNet outperformed other
methods in experiments conducted across multiple
datasets. Furthermore, visual explanations provided
through the Score-CAM technique support the asser-

tion that the Swin-MCSFNet classifier is an effective
tool for accurately classifying retinal images. This
finding holds potential long-term benefits for the
medical community.
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